Homework 3 - Math 300 C Spring 2015 - Dr. Matthew Conroy
Prove each of the following theorems. Be sure to use the "theorem/proof" format.

1. Let \mathcal{A} and \mathcal{B} be families (i.e., sets of sets). Then $\cup(\mathcal{A} \cup \mathcal{B})=(\cup \mathcal{A}) \cup(\cup \mathcal{B})$.
2. Let \mathcal{A} and \mathcal{B} be families. Then $\cup(\mathcal{A} \cap \mathcal{B}) \subseteq(\cup \mathcal{A}) \cap(\cup \mathcal{B})$.
3. There exist non-empty families \mathcal{A} and \mathcal{B} such that $\cup(\mathcal{A} \cap \mathcal{B})=(\cup \mathcal{A}) \cap(\cup \mathcal{B})$.
4. There exist non-empty families \mathcal{A} and \mathcal{B} such that $\cup(\mathcal{A} \cap \mathcal{B}) \neq(\cup \mathcal{A}) \cap(\cup \mathcal{B})$.
5. Suppose \mathcal{A} and \mathcal{B} are families of sets. Then $(\cup \mathcal{A}) \backslash(\cup \mathcal{B}) \subseteq \cup(\mathcal{A} \backslash \mathcal{B})$.

Use induction to prove the following theorems.
6. For all integers $n \geq 8, n!>7 n^{4}$.
7. For all integers $n \geq 12,6^{n}>7\left(5^{n}+4^{n}\right)$.
8. Let $a \in \mathbb{R}_{\neq 0}$. For all integers $n \geq 0$,

$$
\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}
$$

9. Let a and b be positive integers, with $a>b$. For all integers $n \geq 1, a-b$ divides $a^{n}-b^{n}$.
