Homework 3 - Math 300 C Spring 2015 - Dr. Matthew Conroy

Prove each of the following theorems. Be sure to use the "theorem/proof" format.

- 1. Let \mathcal{A} and \mathcal{B} be families (i.e., sets of sets). Then $\cup (\mathcal{A} \cup \mathcal{B}) = (\cup \mathcal{A}) \cup (\cup \mathcal{B})$.
- 2. Let \mathcal{A} and \mathcal{B} be families. Then $\cup (\mathcal{A} \cap \mathcal{B}) \subseteq (\cup \mathcal{A}) \cap (\cup \mathcal{B})$.
- 3. There exist non-empty families \mathcal{A} and \mathcal{B} such that $\cup (\mathcal{A} \cap \mathcal{B}) = (\cup \mathcal{A}) \cap (\cup \mathcal{B})$.
- 4. There exist non-empty families \mathcal{A} and \mathcal{B} such that $\cup (\mathcal{A} \cap \mathcal{B}) \neq (\cup \mathcal{A}) \cap (\cup \mathcal{B})$.
- 5. Suppose A and B are families of sets. Then $(\cup A) \setminus (\cup B) \subseteq \cup (A \setminus B)$.

Use induction to prove the following theorems.

- 6. For all integers $n \ge 8$, $n! > 7n^4$.
- 7. For all integers $n \ge 12$, $6^n > 7(5^n + 4^n)$.
- 8. Let $a \in \mathbb{R}_{\neq 0}$. For all integers $n \ge 0$,

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a}.$$

9. Let *a* and *b* be positive integers, with a > b. For all integers $n \ge 1$, a - b divides $a^n - b^n$.