Here I present a useful theorem (in two parts) that dates back to (at least) Euclid. **Theorem:** Let $m \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}_{>0}$. Then there exist $k, r \in \mathbb{Z}$ with $0 \le r < m$ such that

$$n = mk + r.$$

Proof: Let $m \in \mathbb{Z}_{>0}$. Suppose m = 1. Then, for any $n \in \mathbb{Z}$, $n = n \cdot m + 0$, and 0 < m. Suppose m > 1. We will use induction on n. Let P(n) be the statement " $\exists k, r \in \mathbb{Z}$ with $0 \le r < m$ such that n = km + r". Suppose n = 1. Then $n = 0 \cdot m + 1$, and 1 < m, so P(1) is true. Suppose P(n) is true for some $n = x \ge 1$. Then x = km + r with $k, r \in \mathbb{Z}$ and $0 \le r < m$. Then x + 1 = km + (r + 1). Since r < m, we have $r + 1 \le m$. If r + 1 < m, then we are done. If r + 1 = m, then x + 1 = km + m = (k + 1)m + 0 and 0 < m. Thus, P(x + 1) is true. Hence, P(x) implies P(x + 1). Since P(1) is true, by induction P(n) is true for all $n \ge 1$.

Theorem: Let $m \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}_{>0}$. Then the integers k and r given in the above theorem are unique.

Proof: Let $m \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}$. Suppose $n = k_1m + r_1 = k_2m + r_2$, with $0 \le r_1 < m$ and $0 \le r_2 < m$. Then $(k_1 - k_2)m = r_2 - r_1$. Suppose, without loss of generality, that $r_2 > r_1$. Then $0 \le r_2 - r_1 < m$, and, since $m|r_2 - r_1, r_2 - r_1 = 0$. So $r_2 = r_1$. Hence, $(k_1 - k_2)m = 0$. Since $m \ne 0$, $k_1 = k_2$.

Both of these theorems can be extended to negative m and negative n, but we will not need those results in this course.