
Here I present a useful theorem (in two parts) that dates back to (at least) Euclid.

Theorem: Let m ∈ Z>0. Let n ∈ Z>0. Then there exist k, r ∈ Z with 0 ≤ r < m such that

n = mk + r.

Proof: Let m ∈ Z>0.

Suppose m = 1. Then, for any n ∈ Z, n = n ·m+ 0, and 0 < m.

Suppose m > 1.

We will use induction on n.

Let P (n) be the statement “∃k, r ∈ Z with 0 ≤ r < m such that n = km+ r”.

Suppose n = 1. Then n = 0 ·m+ 1, and 1 < m, so P (1) is true.

Suppose P (n) is true for some n = x ≥ 1.

Then x = km+ r with k, r ∈ Z and 0 ≤ r < m.

Then x+ 1 = km+ (r + 1).

Since r < m, we have r + 1 ≤ m.

If r + 1 < m, then we are done.

If r + 1 = m, then x+ 1 = km+m = (k + 1)m+ 0 and 0 < m.

Thus, P (x+ 1) is true.

Hence, P (x) implies P (x+ 1).

Since P (1) is true, by induction P (n) is true for all n ≥ 1.
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Theorem: Let m ∈ Z>0. Let n ∈ Z>0. Then the integers k and r given in the above theorem

are unique.

Proof: Let m ∈ Z>0. Let n ∈ Z.

Suppose n = k1m+ r1 = k2m+ r2, with 0 ≤ r1 < m and 0 ≤ r2 < m.

Then (k1 − k2)m = r2 − r1.

Suppose, without loss of generality, that r2 > r1.

Then 0 ≤ r2 − r1 < m, and, since m|r2 − r1, r2 − r1 = 0.

So r2 = r1.

Hence, (k1 − k2)m = 0.

Since m 6= 0, k1 = k2.
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Both of these theorems can be extended to negative m and negative n, but we will not

need those results in this course.


