Here I present a useful theorem (in two parts) that dates back to (at least) Euclid.
Theorem: Let $m \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}_{>0}$. Then there exist $k, r \in \mathbb{Z}$ with $0 \leq r<m$ such that

$$
n=m k+r .
$$

Proof: Let $m \in \mathbb{Z}_{>0}$.
Suppose $m=1$. Then, for any $n \in \mathbb{Z}, n=n \cdot m+0$, and $0<m$.
Suppose $m>1$.
We will use induction on n.
Let $P(n)$ be the statement " $\exists k, r \in \mathbb{Z}$ with $0 \leq r<m$ such that $n=k m+r$ ".
Suppose $n=1$. Then $n=0 \cdot m+1$, and $1<m$, so $P(1)$ is true.
Suppose $P(n)$ is true for some $n=x \geq 1$.
Then $x=k m+r$ with $k, r \in \mathbb{Z}$ and $0 \leq r<m$.
Then $x+1=k m+(r+1)$.
Since $r<m$, we have $r+1 \leq m$.
If $r+1<m$, then we are done.
If $r+1=m$, then $x+1=k m+m=(k+1) m+0$ and $0<m$.
Thus, $P(x+1)$ is true.
Hence, $P(x)$ implies $P(x+1)$.
Since $P(1)$ is true, by induction $P(n)$ is true for all $n \geq 1$.

Theorem: Let $m \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}_{>0}$. Then the integers k and r given in the above theorem are unique.
Proof: Let $m \in \mathbb{Z}_{>0}$. Let $n \in \mathbb{Z}$.
Suppose $n=k_{1} m+r_{1}=k_{2} m+r_{2}$, with $0 \leq r_{1}<m$ and $0 \leq r_{2}<m$.
Then $\left(k_{1}-k_{2}\right) m=r_{2}-r_{1}$.
Suppose, without loss of generality, that $r_{2}>r_{1}$.
Then $0 \leq r_{2}-r_{1}<m$, and, since $m \mid r_{2}-r_{1}, r_{2}-r_{1}=0$.
So $r_{2}=r_{1}$.
Hence, $\left(k_{1}-k_{2}\right) m=0$.
Since $m \neq 0, k_{1}=k_{2}$.

Both of these theorems can be extended to negative m and negative n, but we will not need those results in this course.

