Theorem Suppose $a, n \in \mathbb{Z}_{>0}$ and $\sqrt[n]{a}$ is rational. Then $\sqrt[n]{a}$ is an integer.

Proof Suppose $a, n \in \mathbb{Z}_{>0}$.

Suppose that $\sqrt[n]{a}$ is rational.

Note that if a=1, then $\sqrt[n]{a}=\sqrt[n]{1}=1$, which is integer. So we may now suppose that a>1.

Then there exist integers C and D such that $\sqrt[n]{a} = \frac{C}{D}$, and (C, D) = 1.

Then

$$aD^n = C^n$$
.

Let p be any prime that divides a.

Then $p \mid C^n$ and so $p \mid C$.

Let k be the integer such that $p^k \mid\mid C$ (i.e., let $k = \operatorname{ord}_p C$).

Then $p^{nk} \parallel C^n$.

Since (C, D) = 1, we can conclude that $p^{nk} \mid\mid a$.

This shows that the exponent on any prime in the prime factorization of a is a multiple of n.

That is,

$$a = p_1^{nk_1} p_2^{nk_2} \cdots p_r^{nk_r}$$

for some set of primes $\{p_1, p_2, \dots, p_r\}$ and some set of positive integers $\{k_1, k_2, \dots, k_r\}$. Hence,

$$\sqrt[n]{a} = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$$

so $\sqrt[n]{a}$ is a product of integer powers of primes, and hence is an integer.