Theorem Suppose $a, n \in \mathbb{Z}_{>0}$ and $\sqrt[n]{a}$ is rational. Then $\sqrt[n]{a}$ is an integer.

Proof Suppose $a, n \in \mathbb{Z}_{>0}$.
Suppose that $\sqrt[n]{a}$ is rational.
Note that if $a=1$, then $\sqrt[n]{a}=\sqrt[n]{1}=1$, which is integer. So we may now suppose that $a>1$.
Then there exist integers C and D such that $\sqrt[n]{a}=\frac{C}{D}$, and $(C, D)=1$.
Then

$$
a D^{n}=C^{n}
$$

Let p be any prime that divides a.
Then $p \mid C^{n}$ and so $p \mid C$.
Let k be the integer such that $p^{k} \| C$ (i.e., let $k=\operatorname{ord}_{p} C$).
Then $p^{n k} \| C^{n}$.
Since $(C, D)=1$, we can conclude that $p^{n k} \| a$.
This shows that the exponent on any prime in the prime factorization of a is a multiple of n. That is,

$$
a=p_{1}^{n k_{1}} p_{2}^{n k_{2}} \cdots p_{r}^{n k_{r}}
$$

for some set of primes $\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ and some set of positive integers $\left\{k_{1}, k_{2}, \ldots, k_{r}\right\}$. Hence,

$$
\sqrt[n]{a}=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}
$$

so $\sqrt[n]{a}$ is a product of integer powers of primes, and hence is an integer.

