Course summary for Math 301A, Spring 2014

- Division algorithm
- If n is an integer, and m is an integer, then there exist integers a and r, with $0 \leq r<m$, and $n=a m+r$.
- Divisibility
- If a and b are integers, a nonzero, and there exists an integer k such that $b=a k$, then we say a divides b.
- Lots of nice little theorems about divisibility (e.g., divisibility is transitive).
- Infinitude of primes
- You should know this proof by heart!
- GCD and the Euclidean algorithm
- A big fact is that if d is the GCD of a and b, then there are integers m and n such that $d=a m+b n$ (i.e., the GCD of two numbers can be written as a linear combination of them).
- Unique factorization (Fundamental Theorem of Arithmetic)
- Every positive integer greater than one can be expressed in the form $p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ where the p_{i} are prime, and the α_{i} are positive integers; AND if we require $p_{1}<p_{2} \cdots<p_{k}$, then this representation if unique.
- Irrational numbers exist!
- $\sqrt{2}$ (in fact, the square root of any integer that is not a square),,$\frac{\ln 2}{\ln 3}$
- Arithmetic functions: τ, σ, and ϕ
- $\tau(n)=$ the number of divisors of $n=\sum_{d \mid n} 1=\prod_{p^{\alpha}| | n}(\alpha+1)$
- $\sigma(n)=$ the sum of the divisors of $n=\sum_{d \mid n} d=\prod_{p^{\alpha}| | n} \frac{p^{\alpha+1}-1}{p-1}$
- $\phi(n)=\#\{0<m<n:(m, n)=1\}=\prod_{p^{\alpha}| | n}\left(1-\frac{1}{p}\right)$
- Congruences and modular arithmetic
- If $m \mid(a-b)$, then $a \equiv b(\bmod m)$, and all that goes with it.
- Solving linear modular equations (i.e., $a x \equiv b(\bmod m))$
- $A x \equiv A(\bmod A)$ is your friend.
- Solving systems of congruences in one variable
- The Chinese Remainder Theorem tells us that a system of congruences of the form $x \equiv a(\bmod m)$ has a unique solution modulo the product of the moduli provided the moduli are pairwise relatively prime.
- Euler's theorem and primitive roots
- Euler's theorem: $a^{\phi(n)} \equiv 1(\bmod n)$ if $(a, n)=1$.
- If the smallest $m>0$ such that $a^{m} \equiv 1(\bmod n)$ is $\phi(n)$, then a is a primitive root.
- Digit stuff
- Find the last so many digits of something raised to a big power.
- Zeros of n ! in this base or that
- Digit-based tests for divisibility
- Linear diophantine equations
- The equation $a x+b y=c$ has solutions iff $(a, b) \mid c$.
- Frobenius coin problem
- We've got one theorem: if the coin values are a and b, then $a b-a-b$ is the largest sum you cannot express with those coins.
- Pythagorean triples
- There are infinitely many triples, and we can parametrize the primitive ones (a, b, c) by

$$
a=2 m n, b=m^{2}-n^{2}, c=m^{2}+n^{2}
$$

with $m, n>0,(m, n)=1$.

- Method of Descent
- Applicable to equations like $x^{4}+y^{4}=z^{2}$ and $2 x^{2}+3 y^{2}=z^{2}$.
- Sequences
- Limit of ratio of consecutive terms of sequence defined by a recurrence relation.
- Generating functions

