Course summary for Math 301A, Spring 2014

- Division algorithm
 - If n is an integer, and m is an integer, then there exist integers a and r, with $0 \le r < m$, and n = am + r.
- Divisibility
 - If a and b are integers, a nonzero, and there exists an integer k such that b = ak, then we say a divides b.
 - o Lots of nice little theorems about divisibility (e.g., divisibility is transitive).
- Infinitude of primes
 - You should know this proof by heart!
- GCD and the Euclidean algorithm
 - A big fact is that if d is the GCD of a and b, then there are integers m and n such that d = am + bn (i.e., the GCD of two numbers can be written as a linear combination of them).
- Unique factorization (Fundamental Theorem of Arithmetic)
 - Every positive integer greater than one can be expressed in the form $p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ where the p_i are prime, and the α_i are positive integers; AND if we require $p_1 < p_2 \cdots < p_k$, then this representation if unique.
- Irrational numbers exist!
 - $\circ \ \sqrt{2}$ (in fact, the square root of any integer that is not a square), $\frac{\ln 2}{\ln 3}$
- Arithmetic functions: τ , σ , and ϕ

$$\circ \ \tau(n) = \text{the number of divisors of} \ n = \sum_{d \mid n} 1 = \prod_{p^{\alpha} \mid \mid n} (\alpha + 1)$$

$$\circ \ \ \sigma(n) = \text{the sum of the divisors of} \ n = \sum_{d|n} d = \prod_{p^{\alpha}||n} \frac{p^{\alpha+1}-1}{p-1}$$

$$\circ \ \phi(n) = \#\{0 < m < n : (m, n) = 1\} = \prod_{p^{\alpha}||n} \left(1 - \frac{1}{p}\right)$$

- Congruences and modular arithmetic
 - $\circ \text{ If } m | (a b)$, then $a \equiv b \pmod{m}$, and all that goes with it.
- Solving linear modular equations (i.e., $ax \equiv b \pmod{m}$)

- $Ax \equiv A \pmod{A}$ is your friend.
- Solving systems of congruences in one variable
 - \circ The Chinese Remainder Theorem tells us that a system of congruences of the form $x \equiv a \pmod{m}$ has a unique solution modulo the product of the moduli provided the moduli are pairwise relatively prime.
- Euler's theorem and primitive roots
 - Euler's theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ if (a, n) = 1.
 - If the smallest m > 0 such that $a^m \equiv 1 \pmod{n}$ is $\phi(n)$, then a is a primitive root.
- Digit stuff
 - Find the last so many digits of something raised to a big power.
 - Zeros of *n*! in this base or that
 - o Digit-based tests for divisibility
- Linear diophantine equations
 - The equation ax + by = c has solutions iff (a, b)|c.
- Frobenius coin problem
 - \circ We've got one theorem: if the coin values are a and b, then ab-a-b is the largest sum you cannot express with those coins.
- Pythagorean triples
 - $\circ\,$ There are infinitely many triples, and we can parametrize the primitive ones (a,b,c) by

$$a = 2mn, \ b = m^2 - n^2, \ c = m^2 + n^2$$

with
$$m, n > 0$$
, $(m, n) = 1$.

- Method of Descent
 - Applicable to equations like $x^4 + y^4 = z^2$ and $2x^2 + 3y^2 = z^2$.
- Sequences
 - o Limit of ratio of consecutive terms of sequence defined by a recurrence relation.
 - Generating functions