
Extra Examples, Proofs, Etc. for Math 301 Dr. Matthew Conroy

Below are some extra examples for Math 301. These examples are to augment the lectures and
help you do some of the assigned homework problems.

1. A good piece of software everyone can get and use is Pari/GP. It is completely free. It is
available from the Pari/GP website pari.math.u-bordeaux.fr . Pari/GP is included in Sage,
so Sage can do anything you can do in GP, but I find GP simpler to install and use for small
calculations. I just run in on the command-line.

For example, in our textbook Harold mentions that Goldbach’s conjecture has been verified
to 100000 by Pipping. This happened in 1938, and was a very labor-intensive calculation. To
duplicate this calculation using GP, just type

forstep(i=4,100000,2,j=1;while(isprime(i-prime(j))<1,j=j+1))

This will run and return nothing in a mere few seconds (or less!). Had there been any even
integer between 4 and 100000 which was not the sum of two primes, the loop never would
have ended, so this verifies Goldbach’s conjecture to 100000.

You can change the 100000 to much higher values and let it run and verify Goldbach’s well
beyond Pipping’s result. It would take a rather long time to duplicate the current best result
though, which has verified Goldbach’s to over 1018.

This version’s more fun: it will spit out one representation of each even number from 4 to
100000 as a sum of two primes:

forstep(i=4,100000,2,j=1;while(isprime(i-prime(j))<1,j=j+1);

print(i," = ",prime(j)," + ",2*i-prime(j)))

2. Eulcidean Algorithm Worst-Case Scenario! When we use the Euclidean algorithm to find
the GCD of two positive integers, a and b, with a > b, it tends to go pretty quickly. However,
some applications take more time than others. For example, if b | a, then it only takes one
step: b divides a and leaves zero remainder, so one application of the division algorithm and
we’re done.

On the other hand, sometimes things like this happen:

89 = (1)(55) + 34

55 = (1)(34) + 21

34 = (1)(21) + 13

21 = (1)(13) + 8

13 = (1)(8) + 5

8 = (1)(5) + 3

5 = (1)(3) + 2

3 = (1)(2) + 1

2 = (2)(1) + 0



(In this example, each remainder is more than half the size of the previous remainder (except
for the last two steps). If you try other starting pairs, you will see this is not generally the
case.)

Notice the pattern here: 89 = 55 + 34, 55 = 34 + 21, 34 = 21 + 13, 13 = 8 + 5, 8 = 5 +
3, 5 = 3 + 2. This sequence of numbers, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . , is called the
Fibonacci sequence. Formally, we define the Fibonacci sequence Fi by F1 = 1, F2 = 1 and
Fi = Fi−1 + Fi−2 for i > 2.

It turns out that consecutive numbers in the Fibonacci sequence are the worst-case scenario
for the Euclidean Algorithm.

That is, suppose the Euclidean algorithm takes n steps to finish for a pair of positive integers
a and b, a > b. Then the smallest a and b can be are Fn+2 and Fn+1.

We can prove this using induction.

Suppose for a pair of integers a and b, a > b, it takes n steps for the algorithm to finish.
Suppose n = 1. Then b | a, and the smallest positive values that a and b could be are a = 2
and b = 1, i.e. a = F2, b = F1. So, the n = 1 case is true.

Suppose that the statement is true for all values of n up to some k − 1. Suppose it takes k

steps for a pair a, b. Then we’d have, applying just one step of the algorithm,

a = q0b+ r0.

Then, the problem would be to find the gcd of b and r0, which will take k − 1 steps. By, the
induction hypothesis, the smallest values that b and r0 could be are

b = Fk+1 and r = Fk.

Plugging these into a = q0b+ r0, assuming the minimum q0 = 1 yields

a = b+ r0 = Fk+1 + Fk = Fk+2.

Hence, if the algorithm takes k steps, then a is at least as large as Fk+2.

One can show (we might do this later in the course) that

Fk ∼
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and one can use this to prove that the number of steps needed in the Euclidean algorithm is
never more than five times the number of digits of a.

3. We know, thanks to Euclid, that there are infinitely many primes. In 1837, Johann Peter
Gustav Lejeune Dirichlet proved that there are infinitely many primes of the form ak+ b, for
any relatively prime integers a and b. So, for instance, there are infinitely many primes of
the form 4k + 1, 4k + 3, 5k + 1, 5k + 2, etc. Dirichlet’s proof is rather elaborate; it would take
a few weeks in a course to give a nice development of it.

However, certain special cases are much simpler to prove. Here is one such case.

Theorem There are infinitely many primes of the form 4k + 3.

Proof: Suppose there are finitely many primes of the form 4k + 3 greater than 3.



Say m > 0 and p1, p2, . . . , pm are all of the primes greater than 3 that are of the form 4k + 3.

Let x = 4(p1p2 · · · pm) + 3.

Note that 3 does not divide x.

Since pi < x for all i and x is of the form 4k + 3, x is composite.

Write x as x = q1q2 · · · qr where r > 0 and qi are (not necessarily distinct) primes.

Since x is odd, qi 6= 2 for any i.

Hence, all qi are odd, and so are of the form 4k + 1 or 4k + 3.

Suppose all qi are of the form 4k + 1. That is, suppose all qi ≡ 1 (mod 4). Then

x ≡ 1 · 1 · · · 1 ≡ 1 (mod 4).

That is, x is of the form 4k + 1. This is a contradiction, since x is of the form 4k + 3.

Hence, at least one of the qi is of the form 4k + 3; let us suppose qj is of the form 4k + 3.

Then qj = pn for some n. Then pn divides x, but since x = 4(p1p2 · · · pm) + 3,

x ≡ 3 (mod pn)

and since pn 6= 3,
x 6≡ 0 (mod pn).

In other words, pn does not divide x, and so we have another contradiction.

Thus, it is not possible that the list p1, p2, . . . , pm contains all the primes of the form 4k + 3,
and hence there are infinitely many such primes. �.

(Note: A slightly different proof is possible by setting x = 4(p1p2 · · · pm)− 1 instead.)


