1. Define a function \(f : \mathbb{R} \to \mathbb{R} \) by
\[
f(x) = \begin{cases}
2x & \text{if } x \in \mathbb{Q} \\
-3x & \text{if } x \not\in \mathbb{Q}
\end{cases}
\]
Is \(f \) one-to-one? Is \(f \) onto? Is \(f^{-1} \) a function? State and prove a theorem.

2. Let \(a, b, c \) and \(d \) be real numbers. Suppose \(cd \neq 0 \) and \(ad - bc \neq 0 \).
Define \(f : \mathbb{R} \setminus \{-\frac{d}{c}\} \to \mathbb{R} \setminus \{\frac{a}{c}\} \) by
\[
f(x) = \frac{ax + b}{cx + d}.
\]
(a) Show that \(f \) is one-to-one and onto.
(b) Give a formula for \(f^{-1}(x) \).

3. Let \(A, B \) and \(C \) be sets. Let \(f : A \to B \) and \(g : B \to C \).
(a) Prove that if \(f \) and \(g \) are onto, then \(g \circ f \) is onto.
(b) Prove that if \(g \circ f \) is onto, then \(g \) is onto.
(c) If \(g \circ f \) is onto, is \(f \) necessarily onto? Prove your answer.

4. Let \(A \) be the set of subsets of \(\mathbb{R} \). Define a function \(f : \mathbb{R} \to A \) by
\[
f(x) = \{ z \in \mathbb{R} : |z| > x \}.
\]
Is \(f \) one-to-one? Is \(f \) onto?

5. Let \(A \) and \(B \) be sets, and \(f : A \to B \). Suppose \(f \) is one-to-one. Prove that there exists a subset \(C \subseteq B \) such that \(f^{-1} : C \to A \).

6. For each of the following pairs of sets, give a bijection from the first set to the second set.
(a) \(\mathbb{Z} \) and \(\mathbb{Z} \setminus \{-6, 0, 5\} \)
(b) \((-2, \infty) \) and \((-\infty, 7) \)
(c) \((-\infty, 3) \) and \((0, 1) \)