1. Prove that, for all \(x \in \mathbb{Z} \), if \(x^2 - 1 \) is divisible by 8, then \(x \) is odd.

2. Prove or give a counterexample for each of the following statements.

 (a) For all real numbers \(x \) and \(y \), \(|x + y| = |x| + |y| \).

 (b) For all real numbers \(x \) and \(y \), \(|xy| = |x||y| \).

 (c) There is a positive integer \(M \) such that, for every positive integer \(n > M \), \(\frac{1}{n} < 0.002 \).

 (d) For all integers \(a \) and \(b \), if \(a \mid b \) and \(b \mid a \), then \(a = b \) or \(a = -b \).

 (e) For all integers \(m \) and \(n \), if \(n + m \) is odd, then \(n \neq m \).

3. (a) Let \(x \) be an integer. Prove that if \(\sqrt{2}x \) is an integer, then \(x \) is even.

 (b) Is the converse of the statement you proved in (a) true? Prove it or give a counterexample.

 (c) What can you conclude about \(\sqrt{2}x \) if \(x \) is odd?

4. (a) Suppose \(B \) is a set and \(\mathcal{F} \) is a family of sets. If \(\bigcup \mathcal{F} \subseteq B \) then \(\mathcal{F} \subseteq \mathcal{P}(B) \).

 (b) Suppose \(\mathcal{F} \) and \(\mathcal{G} \) are nonempty families of sets. Suppose every element of \(\mathcal{F} \) is a subset of every element of \(\mathcal{G} \). Then \(\bigcup \mathcal{F} \subseteq \bigcap \mathcal{G} \).

5. Define a relation \(T \) on the set \(\mathbb{R} \) of real numbers by

 \[T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x - y| < 1\} \]

 Is \(T \) an equivalence relation? (Justify your answer, of course.)

6. Define a relation \(R \) on \(\mathbb{Z} \) by

 \((x, y) \in R \iff x - y \) is even.

 Determine whether or not \(R \) is reflexive, symmetric and transitive. Is \(R \) an equivalence relation? If \(R \) is an equivalence relation, describe its equivalence classes.

7. Define a relation \(R \) on \(\mathbb{Z} \) by

 \((x, y) \in R \iff xy \equiv 0 \pmod{4} \).

 Determine whether or not \(R \) is reflexive, symmetric and transitive. Is \(R \) an equivalence relation? If \(R \) is an equivalence relation, describe its equivalence classes.

8. Let \(A \) be the set of all real functions \(f : \mathbb{R} \to \mathbb{R} \). Define a relation \(R \) on \(A \) by:

 \((f, g) \in R \iff \text{there exists a real constant } k \text{ such that } f(x) = g(x) + k \text{ for all } x \in \mathbb{R} \).

 Prove that \(R \) is an equivalence relation.

9. Define a relation \(R \) on \(\mathbb{R} \) by:

 \((x, y) \in R \iff |x - y| < 1 \)

 Prove that \(R \) is not an equivalence relation.

10. Let \(A \) and \(B \) be sets. Prove that \(\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B) \).

11. Let \(m \in \mathbb{Z} \) and suppose \(m > 1 \). Suppose \(a, b, c \in \mathbb{Z} \).

 Prove that if \(a \equiv b \pmod{m} \), then \(ac \equiv bc \pmod{m} \).

12. Prove that if \(n \) is an integer, then \(n^2 \equiv 0, 1, \text{ or } 4 \pmod{8} \).