Homework 4 - Math 300 D Autumn 2014 - Dr. Matthew Conroy
Relevant readings: Velleman, sections 3.3, 3.4, 3.5, and 3.6.

1. Let \(a, b, c \) and \(d \) be integers, with \(bd \neq 0 \). Then \(a\sqrt{b} + c\sqrt{d} \) is an algebraic number.

2. Let \(a \) and \(b \) be integers. Then \(a^2b + a + b \) is even if and only if \(a \) and \(b \) are both even.

3. (a) Let \(n \) be an integer. Then the remainder when \(n^2 \) is divided by 4 is 0 or 1.
 (b) The numbers in the set \{99, 999, 9999, \ldots\} cannot be written as the sum of two squared integers, but at least one can be expressed as the sum of three squared integers.

4. Let \(A \) and \(B \) be sets. Then \(A \subseteq B \) iff \(\mathcal{P}(A) \subseteq \mathcal{P}(B) \).

5. Let \(A \) and \(B \) be sets. Then \(\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(\mathcal{A} \cup \mathcal{B}) \), with equality if and only if \(A \subseteq B \) or \(B \subseteq A \).

6. Suppose \(\mathcal{R} \) and \(\mathcal{S} \) are families of sets. If \(\mathcal{R} \subseteq \mathcal{S} \), then \(\cup \mathcal{R} \subseteq \cup \mathcal{S} \).

7. Suppose \(\mathcal{R} \) and \(\mathcal{S} \) are families of sets, and \(\mathcal{R} \neq \emptyset \) and \(\mathcal{S} \neq \emptyset \). If \(\mathcal{R} \subseteq \mathcal{S} \), then \(\cap \mathcal{S} \subseteq \cap \mathcal{R} \).

8. Suppose \(\mathcal{R} \) and \(\mathcal{S} \) are families of sets. Then \((\cup \mathcal{R}) \setminus (\cup \mathcal{S}) \subseteq \cup (\mathcal{R} \setminus \mathcal{S}) \).