Modular arithmetic problems + functions problems

1. What digits can an integer square end in? State and prove a theorem.
2. Show that

$$
13 \mid 6^{123123}-8
$$

3. Show that

$$
49 \mid 5 \cdot 3^{4 m+2}+53 \cdot 2^{5 m}
$$

for all integers $m \geq 0$.
4. Let A be a nonempty set. Suppose $f: A \rightarrow \mathbb{R}$. Define the relation R by

$$
R=\{(a, b) \in A \times A: f(a)=f(b)\}
$$

Show that R is an equivalence relation. Describe the equivalence classes of R.
5. Let A be a nonempty set. Define R by

$$
R=\{(x, x): x \in A\}
$$

Show that R is the only relation on A that is an equivalence relation and a function from A to A.
6. Let A, B and C be sets. Suppose $f: A \rightarrow C$ and $g: B \rightarrow C$. Prove that if A and B are disjoint, then $f \cup g: A \cup B \rightarrow C$.
7. Let \mathcal{F} be the set of all functions from \mathbb{R} to \mathbb{R}.

Let $R=\{(f, g) \in \mathcal{F} \times \mathcal{F}: \exists a \in \mathbb{R} \forall x>a(f(x)=g(x))\}$.
(a) Give an example of a pair of distinct functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $(f, g) \in R$.
(b) Show that R is an equivalence relation.

