DeMorgan's laws
$\neg (P \land Q)$ is equivalent to $\neg P \lor \neg Q$
$\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$
Commutative Laws
$P \wedge Q$ is equivalent to $Q \wedge P$
$P \lor Q$ is equivalent to $Q \lor P$
Associative Laws
$P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$
$P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$
Idempotent Laws
$P \wedge P$ is equivalent to P
$P \lor P$ is equivalent to P
Distributive Laws
$P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$
$P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$
Absorption Laws
$P \lor (P \land Q)$ is equivalent to P
$P \land (P \lor Q)$ is equivalent to P
Double Negation Law
$\neg \neg P$ is equivalent to <i>P</i>
Tautology Laws
$P \wedge (a \text{ tautology}) \text{ is equivalent to } P$
$P \lor (a tautology)$ is a tautology
\neg (a tautology) is a contradiction
Contradiction Laws
$P \wedge (a \text{ contradiction})$ is a contradiction
$P \lor$ (a contradiction) is equivalent to P
\neg (a contradiction) is a tautology