Induction

- 1. Find the smallest $k \in \mathbb{Z}$ such that $n! > n^3$ for all $n \ge k$. Prove the result using induction.
- 2. Use induction to prove that

$$10|4^{2m+1} + 6^{2m+1}$$

for all $m \in \mathbb{Z}_{>0}$.

3. Let n be a positive odd integer.

Use induction to prove that the sum of all positive odd integers less than or equal to n is $\left(\frac{n+1}{2}\right)^2$.

- 4. Let A be a finite set. Prove that if $f:A\to A$ is injective, then f is bijective.
- 5. Prove that the set of all integer squares is denumerable.
- 6. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.
- 7. Suppose *A* is an infinite set and *B* is a finite subset of *A*. Prove that $A \setminus B$ is infinite.