Induction

1. Find the smallest $k \in \mathbb{Z}$ such that $n!>n^{3}$ for all $n \geq k$. Prove the result using induction.
2. Use induction to prove that

$$
10 \mid 4^{2 m+1}+6^{2 m+1}
$$

for all $m \in \mathbb{Z}_{\geq 0}$.
3. Let n be a positive odd integer.

Use induction to prove that the sum of all positive odd integers less than or equal to n is $\left(\frac{n+1}{2}\right)^{2}$.
4. Let A be a finite set. Prove that if $f: A \rightarrow A$ is injective, then f is bijective.
5. Prove that the set of all integer squares is denumerable.
6. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.
7. Suppose A is an infinite set and B is a finite subset of A. Prove that $A \backslash B$ is infinite.

