Axioms

Suppose *x*, *y*, and *z* are real numbers. We will take as fact each of the following.

- 1. x + y and xy are real numbers. (\mathbb{R} is *closed* under addition and multiplication.)
- 2. If x = y, then x + z = y + z and xz = yz. (This is sometimes called *substitution of equals*.)
- 3. x + y = y + x and xy = yx (addition and multiplication are *commutative* in \mathbb{R})
- 4. (x + y) + z = x + (y + z) and (xy)z = x(yz) (addition and multiplication are *associative* in \mathbb{R})
- 5. x(y+z) = xy + xz (This is the *Distributive Law.*)
- 6. x + 0 = 0 + x = x and $x \cdot 1 = 1 \cdot x = x$ (0 is the *additive identity*; 1 is the *multiplicative identity*.)
- 7. There exists a real number -x such that x + (-x) = (-x) + x = 0. (That is, every real number has an *additive inverse* in \mathbb{R} .)
- 8. If $x \neq 0$, then there exists a real number x^{-1} such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. (That is, every non-zero real number has a *multiplicative inverse* in \mathbb{R} .)
- 9. If x > 0 and y > 0, then x + y > 0 and xy > 0.
- 10. Either x > 0, -x > 0, or x = 0.
- 11. If x and y are integers, then -x, x + y, and xy are integers. (The additive inverse of an integer is an integer and \mathbb{Z} is closed under addition and multiplication.)

<u>NOTE</u>: It is not hard to prove that \mathbb{Q} , the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in \mathbb{Q} .

 $\neg (P \land Q)$ is equivalent to $\neg P \lor \neg Q$ $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$ **Commutative Laws** $P \wedge Q$ is equivalent to $Q \wedge P$ $P \lor Q$ is equivalent to $Q \lor P$ Associative Laws $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$ $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$ Idempotent Laws $P \wedge P$ is equivalent to P $P \lor P$ is equivalent to PDistributive Laws $P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$ $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$ Absorption Laws $P \lor (P \land Q)$ is equivalent to P $P \wedge (P \vee Q)$ is equivalent to P Double Negation Law $\neg \neg P$ is equivalent to *P* Tautology Laws $P \wedge$ (a tautology) is equivalent to P

 $P \lor$ (a tautology) is a tautology

 \neg (a tautology) is a contradiction

Contradiction Laws

 $P \wedge (\text{a contradiction})$ is a contradiction

 $P \lor$ (a contradiction) is equivalent to P \neg (a contradiction) is a tautology

Elementary Properties of Real Numbers

The following properties of real numbers that allow us to do algebra follow from the axioms on the front page.

- If x, y, z, u, and v are real numbers, then: 1. $x \cdot 0 = 0$ 2. If x + z = y + z, then x = y. 3. If $x \cdot z = y \cdot z$ and $z \neq 0$, then x = y. 4. $-x = (-1) \cdot x$ 5. $(-x) \cdot y = -(x \cdot y)$ 6. $(-x) \cdot (-y) = x \cdot y$ 7. If $x \cdot y = 0$, then x = 0 or y = 0. 8. If x < y and y < x, then x = y. 9. If $x \leq y$ and $y \leq z$, then $x \leq z$. 10. At least one of the following is true: $x \leq y$ or $y \leq z$ *x*. 11. If $x \leq y$, then $x + z \leq y + z$. 12. If x < y and 0 < z, then xz < yz. 13. If x < y and z < 0, then yz < xz. 14. If x < y and u < v, then x + u < y + v. 15. If 0 < x < y and 0 < u < v, then xu < yv. 16. If $x \leq y$, then $-y \leq -x$. 17. $0 < x^2$ 18. 0 < 119. If 0 < x, then $0 < x^{-1}$. 20. If 0 < x < y, then $0 < y^{-1} < x^{-1}$. And here are a couple of properties of integers. 21. Every integer is either even or odd, never both.
 - 22. The only integers that divide 1 are -1 and 1.