## Axioms

Suppose $x, y$, and $z$ are real numbers. We will take as fact each of the following.

1. $x+y$ and $x y$ are real numbers. $(\mathbb{R}$ is closed under addition and multiplication.)
2. If $x=y$, then $x+z=y+z$ and $x z=y z$. (This is sometimes called substitution of equals.)
3. $x+y=y+x$ and $x y=y x$ (addition and multiplication are commutative in $\mathbb{R}$ )
4. $(x+y)+z=x+(y+z)$ and $(x y) z=x(y z)$ (addition and multiplication are associative in $\mathbb{R}$ )
5. $x(y+z)=x y+x z$ (This is the Distributive Law.)
6. $x+0=0+x=x$ and $x \cdot 1=1 \cdot x=x$ ( 0 is the additive identity; 1 is the multiplicative identity.)
7. There exists a real number $-x$ such that $x+(-x)=(-x)+x=0$. (That is, every real number has an additive inverse in $\mathbb{R}$.)
8. If $x \neq 0$, then there exists a real number $x^{-1}$ such that $x \cdot x^{-1}=x^{-1} \cdot x=1$. (That is, every non-zero real number has a multiplicative inverse in $\mathbb{R}$.)
9. If $x>0$ and $y>0$, then $x+y>0$ and $x y>0$.
10. Either $x>0,-x>0$, or $x=0$.
11. If $x$ and $y$ are integers, then $-x, x+y$, and $x y$ are integers. (The additive inverse of an integer is an integer and $\mathbb{Z}$ is closed under addition and multiplication.)

NOTE: It is not hard to prove that $\mathbb{Q}$, the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in $\mathbb{Q}$.

DeMorgan's laws

$$
\begin{aligned}
& \neg(P \wedge Q) \text { is equivalent to } \neg P \vee \neg Q \\
& \neg(P \vee Q) \text { is equivalent to } \neg P \wedge \neg Q
\end{aligned}
$$

## Commutative Laws

$P \wedge Q$ is equivalent to $Q \wedge P$
$P \vee Q$ is equivalent to $Q \vee P$

## Associative Laws

$$
\begin{aligned}
& P \wedge(Q \wedge R) \text { is equivalent to }(P \wedge Q) \wedge R \\
& P \vee(Q \vee R) \text { is equivalent to }(P \vee Q) \vee R
\end{aligned}
$$

Idempotent Laws

$$
\begin{aligned}
& P \wedge P \text { is equivalent to } P \\
& P \vee P \text { is equivalent to } P
\end{aligned}
$$

## Distributive Laws

$$
\begin{aligned}
& P \wedge(Q \vee R) \text { is equivalent to }(P \wedge Q) \vee(P \wedge R) \\
& P \vee(Q \wedge R) \text { is equivalent to }(P \vee Q) \wedge(P \vee R)
\end{aligned}
$$

## Absorption Laws

$$
\begin{aligned}
& P \vee(P \wedge Q) \text { is equivalent to } P \\
& P \wedge(P \vee Q) \text { is equivalent to } P
\end{aligned}
$$

Double Negation Law
$\neg \neg P$ is equivalent to $P$
Tautology Laws
$P \wedge$ (a tautology) is equivalent to P
$P \vee$ (a tautology) is a tautology
$\neg$ (a tautology) is a contradiction

## Contradiction Laws

$P \wedge$ (a contradiction) is a contradiction
$P \vee$ (a contradiction) is equivalent to $P$
$\neg($ a contradiction) is a tautology

## Elementary Properties of Real Numbers

The following properties of real numbers that allow us to do algebra follow from the axioms on the front page. If $x, y, z, u$, and $v$ are real numbers, then:

1. $x \cdot 0=0$
2. If $x+z=y+z$, then $x=y$.
3. If $x \cdot z=y \cdot z$ and $z \neq 0$, then $x=y$.
4. $-x=(-1) \cdot x$
5. $(-x) \cdot y=-(x \cdot y)$
6. $(-x) \cdot(-y)=x \cdot y$
7. If $x \cdot y=0$, then $x=0$ or $y=0$.
8. If $x \leq y$ and $y \leq x$, then $x=y$.
9. If $x \leq y$ and $y \leq z$, then $x \leq z$.
10. At least one of the following is true: $x \leq y$ or $y \leq$ $x$.
11. If $x \leq y$, then $x+z \leq y+z$.
12. If $x \leq y$ and $0 \leq z$, then $x z \leq y z$.
13. If $x \leq y$ and $z \leq 0$, then $y z \leq x z$.
14. If $x \leq y$ and $u \leq v$, then $x+u \leq y+v$.
15. If $0 \leq x \leq y$ and $0 \leq u \leq v$, then $x u \leq y v$.
16. If $x \leq y$, then $-y \leq-x$.
17. $0 \leq x^{2}$
18. $0<1$
19. If $0<x$, then $0<x^{-1}$.
20. If $0<x<y$, then $0<y^{-1}<x^{-1}$.

And here are a couple of properties of integers.
21. Every integer is either even or odd, never both.
22. The only integers that divide 1 are -1 and 1 .

