Problems on relations

1. Let $A=\mathbb{R}$. Define a relation R on A by

$$
(x, y) \in R \Leftrightarrow x<y
$$

Determine whether or not R is an equivalence relation. Prove your answer.
2. Let $A=\mathbb{R}$. Define a relation R on A by

$$
(x, y) \in R \Leftrightarrow x \leq y
$$

Determine whether or not R is an equivalence relation. Prove your answer.
3. Let $A=\mathbb{R}$.

Define a relation R by

$$
(a, b) \in R \Leftrightarrow a-b \in \mathbb{Q} .
$$

Is R an equivalence relation? Prove your answer.
If R is an equivalence relation, describe the equivalence classes of R.
4. How many equivalence relations are there on a set with three elements? List them.
5. Let $A=\mathbb{R} \times \mathbb{R}$.

Define a relation R on A by

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow \text { the distance from }\left(x_{1}, y_{1}\right) \text { to }\left(x_{2}, y_{2}\right) \text { is a rational number. }
$$

Determine whether or not R is an equivalence relation. Prove your answer.
6. Let $a, b \in \mathbb{Z}$. Let $m \in \mathbb{Z}_{>0}$.

We say a is congruent to $b \bmod m$ iff $m \mid(a-b)$.
If a is congruent to $b \bmod m$, we write

$$
a \equiv b(\bmod m)
$$

Show that the relation R on \mathbb{Z} defined by

$$
R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: a \equiv b(\bmod m)\}
$$

is an equivalence relation.

