Injections, surjections, bijections, and inverses

1. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{cc}
2 x & \text { if } x \in \mathbb{Q} \\
-3 x & \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Is f one-to-one? Is f onto? Is f^{-1} a function? State and prove a theorem.
2. Let a, b, c and d be real numbers. Suppose $c d \neq 0$ and $a d-b c \neq 0$.

Define $f: \mathbb{R} \backslash\left\{-\frac{d}{c}\right\} \rightarrow \mathbb{R} \backslash\left\{\frac{a}{c}\right\}$ by

$$
f(x)=\frac{a x+b}{c x+d}
$$

(a) Show that f is one-to-one and onto.
(b) Give a formula for $f^{-1}(x)$.
3. Let A, B and C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f and g are onto, then $g \circ f$ is onto.
(b) Prove that if $g \circ f$ is onto, then g is onto.
(c) If $g \circ f$ is onto, is f necessarily onto? Prove your answer.
4. Let A be the set of subsets of \mathbb{R}. Define a function $f: \mathbb{R} \rightarrow A$ by

$$
f(x)=\{z:|z|>x\} .
$$

Is f one-to-one? Is f onto?
5. Let A and B be sets, and $f: A \rightarrow B$. Suppose f is one-to-one. Prove that there exists a subset $C \subseteq B$ such that $f^{-1}: C \rightarrow A$.
6. For each of the following pairs of sets, give a bijection from the first set to the second set.
(a) \mathbb{Z} and $\mathbb{Z} \backslash\{2,5\}$
(b) $(-2, \infty)$ and $(7, \infty)$
(c) $(-\infty, 3)$ and $(-25,18)$

