Homework 3 - Math 300 B, C Spring 2013 - Dr. Matthew Conroy
Relevant readings: Velleman, sections 2.3,3.1, and 3.2.

1. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
2. Prove that there exist sets A and B such that $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.
3. Let a and b be negative real numbers. Prove that if $a<b$ then $a^{2}>b^{2}$.
4. Let a, b and c be positive integers. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
5. One fact we use all the time when writing proofs is that, if $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$. Prove this is valid by showing that

$$
((A \rightarrow B) \wedge(B \rightarrow C)) \rightarrow(A \rightarrow C)
$$

is a tautology. Do this by using applicable laws to show that this is equivalent to a statement which we know is a tautology.
6. Prove the following theorems:
(a) The sum of two rational numbers is a rational number.
(b) The sum of a rational number and an irrational number is an irrational number.
(c) The product of an irrational number and a non-zero rational number is an irrational number.
(d) The sum of two irrational numbers may be a rational number.

