Homework 3 - Math 300 B, C Spring 2013 - Dr. Matthew Conroy Relevant readings: Velleman, sections 2.3, 3.1, and 3.2.

- 1. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- 2. Prove that there exist sets *A* and *B* such that $\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B)$.
- 3. Let *a* and *b* be negative real numbers. Prove that if a < b then $a^2 > b^2$.
- 4. Let a, b and c be positive integers. Prove that if a|b and b|c, then a|c.
- 5. One fact we use all the time when writing proofs is that, if $A \to B$ and $B \to C$, then $A \to C$. Prove this is valid by showing that

$$((A \to B) \land (B \to C)) \to (A \to C)$$

is a tautology. Do this by using applicable laws to show that this is equivalent to a statement which we know is a tautology.

- 6. Prove the following theorems:
 - (a) The sum of two rational numbers is a rational number.
 - (b) The sum of a rational number and an irrational number is an irrational number.
 - (c) The product of an irrational number and a non-zero rational number is an irrational number.
 - (d) The sum of two irrational numbers may be a rational number.