Multiplying by the Conjugate

Sometimes it is useful to eliminate square roots from a fractional expression.
A way to do this is to utilize the fact that $(A+B)(A-B)=A^{2}-B^{2}$ in order to eliminate square roots via squaring.

For instance, consider the expression

$$
\frac{\sqrt{x}+x^{2}}{x-2}
$$

Suppose we want to eliminate the square root from the numerator (this is sometimes called rationalizing the numerator).

What we can do it multiply the entire expression by

$$
\frac{\sqrt{x}-x^{2}}{\sqrt{x}-x^{2}}
$$

Since this is essentially equal to 1 (that is, it is 1 unless $x=1$ or $x=0$, in which case it is undefined), our resulting expression will be essentially equivalent but it will have a different form:

$$
\frac{\sqrt{x}+x^{2}}{x-2}=\frac{\sqrt{x}+x^{2}}{x-2}\left(\frac{\sqrt{x}-x^{2}}{\sqrt{x}-x^{2}}\right)=\frac{x-x^{4}}{(x-2)\left(\sqrt{x}-x^{2}\right)}
$$

The equality if true as long as $x \neq 1$ or 0 .
Note that we have moved the root from the numerator to the denominator; that's what this technique does.

Here's another example:

$$
\frac{x-\sqrt{x}}{s}=\frac{x-\sqrt{x}}{s}\left(\frac{x+\sqrt{x}}{x+\sqrt{x}}\right)=\frac{x^{2}-x}{s(x+\sqrt{x})}
$$

which is true provided $x \neq 0$.
The place students see this often is when working with the difference quotient expression

$$
\frac{f(x+h)-f(x)}{h}
$$

If $f(x)$ is a square root function, then multiplication by the conjugate can be used to simplify this expression (in particular, to eliminate the h from the denominator).

Here's an example of this.

Suppose $f(x)=\sqrt{2 x-1}$.
Then

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{\sqrt{2(x+h)-1}-\sqrt{2 x-1}}{h} \\
& =\frac{\sqrt{2(x+h)-1}-\sqrt{2 x-1}}{h}\left(\frac{\sqrt{2(x+h)-1}+\sqrt{2 x-1}}{\sqrt{2(x+h)-1}+\sqrt{2 x-1}}\right) \\
& =\frac{2(x+h)-1-(2 x-1)}{h(\sqrt{2(x+h)-1}+\sqrt{2 x-1})} \\
& =\frac{2 h}{h(\sqrt{2(x+h)-1}+\sqrt{2 x-1})} \\
& =\frac{2}{(\sqrt{2(x+h)-1}+\sqrt{2 x-1})}
\end{aligned}
$$

provided $h \neq 0$.
We can, as well, move radicals from the denominator to the numerator:

$$
\frac{1}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+1}\left(\frac{\sqrt{x}-1}{\sqrt{x}-1}\right)=\frac{\sqrt{x}-1}{x-1}
$$

provided $x \neq 1$, since $\sqrt{x}-1=0$ when $x=1$.

