MATH 300 B Final Exam March 17, 2011

Name _____

Student ID #_____

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:_____

1	20	
2	10	
3	10	
4	5	
5	10	
6	10	
Total	65	

- Your exam should consist of this cover sheet, followed by 6 problems. Check that you have a complete exam.
- You are not allowed to use any outside sources on this exam.

• Turn your cell phone OFF and put it AWAY for the duration of the exam.

GOOD LUCK!

- 1. (20 points) For each of the following, determine whether the statement is TRUE or FALSE. You do not need to provide any justification.
 - (a) The function $f : \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ defined by f(x) = (x 3, 2x + 1) is a bijection.

(b) The function $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by g(n,m) = (m-3, 2n+1) is a bijection.

- (c) There exists a bijection $f : \mathbb{Z} \to \mathbb{N} \times \mathbb{N}$.
- (d) If A and B are countable, then A B is countable.
- (e) $\mathbb{Q} \mathbb{Z}$ is denumerable.

(f) Let $S = \{(x, y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}$. Then S is uncountable.

(f) TRUE____FALSE ____(g) Suppose $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ and define $h : \mathbb{R} \to \mathbb{R}$ by h(x) = f(x) + g(x) for all $x \in \mathbb{R}$. If f and g are onto, then h must be onto.

(g) TRUE_____FALSE _____

(h) Suppose $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. If g is decreasing, then $g \circ f$ must also be decreasing.

(h) TRUE_____FALSE _____

(a) TRUE FALSE

(b) TRUE FALSE

(c) TRUE_____FALSE _____

(d) TRUE_____FALSE _____

(e) TRUE _____FALSE _____

(i) If $f: A \to B$, $g: B \to C$, and $g \circ f: A \to C$ is onto, then f must be onto.

(i) TRUE_____FALSE _____

(j) If $f: A \to B, g: B \to C$, and $g \circ f: A \to C$ is onto, then g must be onto.

(j) TRUE_____FALSE _____

2. (10 points) Prove that $3|(2^{2n}-1)$ for every $n \in \mathbb{N}$.

- 3. (10 points)
 - (a) Define a relation R on \mathbb{Z} by

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \text{ is even}\}.$$

Is R an equivalence relation? (Justify your answer, of course.)

(b) Let A be a non-empty set and T be a relation on A. Prove or give a counterexample of the following statement: If T is symmetric and transitive and the domain of T is A, then T is an equivalence relation.

4. (5 points) Let A, B, and C be sets and suppose $f : A \to B$, $g : B \to C$, and $h : B \to C$. Prove that, if f is onto and $g \circ f = h \circ f$, then g = h.

- 5. (10 points) Suppose A and B are sets, $f: A \to B$, and $C \subseteq B$.
 - (a) Prove that $A f^{-1}(C) \subseteq f^{-1}(B C).$

(b) Suppose A is countable. Prove that, if B is uncountable, then B - A is uncountable.

6. (10 points) Define $f : \mathbb{R} - \{1\} \to \mathbb{R} - \{3\}$ by

$$f(x) = \frac{3x}{x-1}.$$

Is f a bijection? Prove your answer.