Name \qquad
Student ID \# \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	12	
2	8	
3	6	
4	6	
5	8	
6	10	
Total	50	

- Your exam should consist of this cover sheet, followed by 6 problems. Check that you have a complete exam.
- You are allowed to use only the lists of axioms, elementary properties, and proved results I provide. All other sources are forbidden.
- The use of headphones/earbuds is forbidden during this exam.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

1. (12 points) Prove or disprove:
(a) If $A \subseteq B$ and A is denumerable, then B is denumerable.
(b) If $A \subseteq B$ and B is denumerable, then A is denumerable.
(c) If A and B are denumerable, then $A-B$ is denumerable.
(d) If A and B are denumerable, then $A \cap B$ is denumerable.
(e) $\mathbb{Q}-\mathbb{N}$ is countably infinite.
2. (8 points)
(a) Let T be the relation on \mathbb{R} defined by

$$
x T y \Leftrightarrow|x|=y
$$

Prove that T is not an equivalence relation.
(b) Let A be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Define a relation R on A by:
$f R g \Leftrightarrow$ there exists a real constant c such that $f(x)=g(x)+c$ for all $x \in \mathbb{R}$. Prove that R is an equivalence relation.
3. (6 points) Let A, B, and C be sets and suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that, if f and g are one-to-one, then $g \circ f: A \rightarrow C$ is one-to-one.
(b) Prove that, if $g \circ f: A \rightarrow C$ is onto, then g is onto.
4. (6 points) Prove that $7 \mid\left(2^{n+2}+3^{2 n+1}\right)$ for every $n \in \mathbb{N}$.
5. (8 points) Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$
f(x)= \begin{cases}-4 x-30 & \text { if } x<-5 \\ 2 x & \text { if }-5 \leq x \leq 5 \\ 15-x & \text { if } x>5\end{cases}
$$

Prove that f is surjective but not injective.
6. (10 points) Let A and B be sets, X and Y be subsets of A, and U and V be subsets of B. Suppose $f: A \rightarrow B$.
Recall: If $C \subseteq A$, then $f(C)=\{b \in B: b=f(a)$ for some $a \in C\}$. If $D \subseteq B$, then $f^{-1}(D)=\{a \in A: f(a) \in D\}$.
(a) Prove that $f^{-1}(U)-f^{-1}(V)=f^{-1}(U-V)$.
(b) Prove that $f(X)-f(Y) \subseteq f(X-Y)$.
(c) Give an example to show that $f(X-Y)$ need not be a subset of $f(X)-f(Y)$.

