MATH 300 A, B Spring 2012 Midterm Study Problems

- 1. Give a useful denial of each statement. You may use symbols like \forall and \exists , et cetera.
 - (a) For every real number x, there exists a real number y such that x < y.
 - (b) There exists a function $f : \mathbb{R} \to \mathbb{R}$ such that, for every real number x, f(2x) = 4f(x).
 - (c) If x is a positive real number, then $\ln x \ge 0$ or $\frac{1}{x} > 1$.
 - (d) For all real $x, x \neq 0 \Rightarrow x^2 > 0$.
- 2. Let *P* be the statement: "Every prime number is odd." Which of the following are logically equivalent to *P*? (Check all that apply.)
- $_$ *n* is odd implies *n* is prime.
- $_$ *n* is odd if *n* is prime.
- _____ If *n* is odd, then *n* is prime.
- _____ If *n* is prime, then *n* is odd.
- _____ There exist numbers that are both prime and odd.
- _____ No even number is prime.
- _____ *n* is odd if and only if *n* is prime.
- 3. Let A, B, and C be sets.
 - (a) Prove that $(A \cap B) \setminus C \subseteq (B \cup C) \setminus (B \cap C)$.
 - (b) Give a counterexample that demonstrates that $(B \cup C) \setminus (B \cap C)$ is not necessarily a subset of $(A \cap B) \setminus C$.
 - (c) Prove that if $A \subseteq B \setminus C$ then A and C are disjoint.
- 4. (a) Prove that, for all $x \in \mathbb{Z}$, if $x^2 1$ is divisible by 8, then x is odd.
 - (b) Let *P* be the statement: "For all $x \in \mathbb{Z}$, if *x* is odd, then $x^2 1$ is divisible by 8."
 - i. What is the negation of the statement *P*?
 - ii. Which is true: *P* or its negation? Prove your claim.
 - (c) Prove that, for all integers x, the remainder upon division by 12 of $x^2 + 1$ is 0, 1, 2, 5, or 10.
- 5. Prove or give a counterexample for each of the following statements.
 - (a) For all real numbers x and y, |x + y| = |x| + |y|.
 - (b) For all real numbers x and y, |xy| = |x||y|.
 - (c) There is a natural number M such that, for every natural number n > M, $\frac{1}{n} < 0.002$.
 - (d) For all integers *a* and *b*, if a|b and b|a, then a = b or a = -b.
 - (e) For all integers m and n, if n + m is odd, then $n \neq m$.
- 6. (a) Let *x* be an integer. Prove that if $\sqrt{2x}$ is an integer, then *x* is even.
 - (b) Is the converse of the statement you proved in (a) true? Prove it or give a counterexample.
 - (c) What can you conclude about $\sqrt{2x}$ if x is odd?
- 7. (a) Suppose *B* is a set and \mathcal{F} is a family of sets. If $\bigcup \mathcal{F} \subseteq B$ then $\mathcal{F} \subseteq \mathcal{P}(B)$.
 - (b) Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets. Suppose every element of \mathcal{F} is a subset of every element of \mathcal{G} . Prove that $\bigcup \mathcal{F} \subseteq \cap \mathcal{G}$.