1. Give a useful denial of each statement. You may use symbols like $\forall$ and $\exists$, et cetera.
(a) For every real number $x$, there exists a real number $y$ such that $x<y$.
(b) There exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every real number $x, f(2 x)=4 f(x)$.
(c) If $x$ is a positive real number, then $\ln x \geq 0$ or $\frac{1}{x}>1$.
(d) For all real $x, x \neq 0 \Rightarrow x^{2}>0$.
2. Let $P$ be the statement: "Every prime number is odd." Which of the following are logically equivalent to $P$ ? (Check all that apply.)
$\qquad$ $n$ is odd implies $n$ is prime.
$\qquad$ $n$ is odd if $n$ is prime.
If $n$ is odd, then $n$ is prime.
___ If $n$ is prime, then $n$ is odd.
___ There exist numbers that are both prime and odd.
___ No even number is prime.
$\qquad$ $n$ is odd if and only if $n$ is prime.
3. Let $A, B$, and $C$ be sets.
(a) Prove that $(A \cap B) \backslash C \subseteq(B \cup C) \backslash(B \cap C)$.
(b) Give a counterexample that demonstrates that $(B \cup C) \backslash(B \cap C)$ is not necessarily a subset of $(A \cap B) \backslash C$.
(c) Prove that if $A \subseteq B \backslash C$ then $A$ and $C$ are disjoint.
4. (a) Prove that, for all $x \in \mathbb{Z}$, if $x^{2}-1$ is divisible by 8 , then $x$ is odd.
(b) Let $P$ be the statement: "For all $x \in \mathbb{Z}$, if $x$ is odd, then $x^{2}-1$ is divisible by 8 ."
i. What is the negation of the statement $P$ ?
ii. Which is true: $P$ or its negation? Prove your claim.
(c) Prove that, for all integers $x$, the remainder upon division by 12 of $x^{2}+1$ is $0,1,2,5$, or 10 .
5. Prove or give a counterexample for each of the following statements.
(a) For all real numbers $x$ and $y,|x+y|=|x|+|y|$.
(b) For all real numbers $x$ and $y,|x y|=|x||y|$.
(c) There is a natural number $M$ such that, for every natural number $n>M, \frac{1}{n}<0.002$.
(d) For all integers $a$ and $b$, if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
(e) For all integers $m$ and $n$, if $n+m$ is odd, then $n \neq m$.
6. (a) Let $x$ be an integer. Prove that if $\sqrt{2 x}$ is an integer, then $x$ is even.
(b) Is the converse of the statement you proved in (a) true? Prove it or give a counterexample.
(c) What can you conclude about $\sqrt{2 x}$ if $x$ is odd?
7. (a) Suppose $B$ is a set and $\mathcal{F}$ is a family of sets. If $\bigcup \mathcal{F} \subseteq B$ then $\mathcal{F} \subseteq \mathcal{P}(B)$.
(b) Suppose $\mathcal{F}$ and $\mathcal{G}$ are nonempty families of sets. Suppose every element of $\mathcal{F}$ is a subset of every element of $\mathcal{G}$. Prove that $\bigcup \mathcal{F} \subseteq \cap \mathcal{G}$.
