Basic skills list for the 126 Midterm 1

The following is a collection of some of the things you are expected to be able to do on the first midterm. It is intended as a starting point, not as a comprehensive summary of the course: review all lectures, reading materials, and homework problems to get the complete picture.

1. Vectors, basic

You should be able to determine or find:
(a) The magnitude of a vector
(b) The dot product of two vectors
(c) The cross product of two vectors
(d) The angle between two vectors
(e) Whether or not two vectors are parallel
(f) Whether or not two vectors are perpendicular
2. Lines, planes, and points in 3D

You should be able to determine or find:
(a) The center and radius of a sphere given by its equation
(b) The point of intersection of two lines
(c) The line of intersection of two planes
(d) The equation of a line passing through two given points
(e) The equation of a plane passing through three given points
(f) The equation of a plane passing through a point, parallel to a given plane
(g) The equation of a plane containing a line and a given point
(h) The angle between two intersecting planes
(i) The angle between two intersecting lines
(j) Whether or not a point is part of a given line, or a given plane
(k) Whether or not a line is part of a given plane
(l) Whether or not two planes intersect or are parallel
(m) Whether or not two lines intersect or are parallel
(n) Whether or not two sets of equations define the same, or different, lines or planes
3. Cylinders and Quadric Surfaces

You should be able to:
(a) identify a quadric surface from its equation
(b) identify a cylinder given its equation (i.e., be able to tell that is is a cylinder)
(c) identify a quadric surface from a sketch of one
(d) describe the traces of a surface given its equation
4. Parametric and polar stuff

You should be able to determine or find:
(a) $\frac{d y}{d x}$ given $x=f(t)$ and $y=g(t)$
(b) the Cartesian equation of a curve defined using polar equations, and vice versa
(c) the tangent line to a curve defined with a polar equation
(d) a sketch of a curve defined by a simple polar equation
5. Vector functions

Given a vector function $\vec{r}(t)$, you should be able to:
(a) find tangent vectors and tangent lines to $\vec{r}(t)$
(b) compute the arc length of (a piece of) a curve defined by $\vec{r}(t)$
(c) reparameterize a curve with respect to arclength
(d) compute curvature
(e) find unit tangent, normal, and bi-normal vectors
(f) find normal and osculating planes
(g) solve problems involving position, velocity, speed and acceleration of an object moving along the curve defined by $\vec{r}(t)$

