
Summary for Midterm Two - Math 125

Here is an outline of the material for the second midterm. The core of your studying should be
the assigned homework problems: make sure you really understand those well before moving
on to other things (like old midterms).

• 6.4 - Work

– Many problems finding the work required to perform a certain task can be solved by
cutting the task into pieces, approximating the work to perform each piece, summing
these approximations, and taking a limit as the number of pieces goes to infinity. The
result is, of course, an integral.

– There are basically three categories of problems you might see in this course: cable
problems, spring problems, and pumping/digging problems.

• 6.5 - Average Value of a Function

– This is a very short section. You should understand the definition of the average
value of a function on an interval.

• 7.1 - Integration by Parts

– You should understand how to apply the integration by parts technique:
∫

u dv = uv − v

∫

du

– You should be able to recognize integrands for which this technique is particularly
appropriate, such as:

1. a positive integer power of x times sin x, cos x, ex (or related functions)

2. ln x times any power of x

3. ex times sin x or cos x

– Integration by parts can be the method of last resort: if nothing else works, you
can almost always try ”parts”: if you can differentiate the integrand, you can use it.
Whether it helps or not is another question, but it works well with such function as
ln x and arcsin x.

• 7.2 - Trigonometric Integrals

– You should be able to integrate integrals of the form
∫

sinn x cosm x dx

and
∫

tann x secm x dx



– The strategies for these integrals depend on the parities of m and n (that is, whether
they are even or odd). You should practice all cases. Note that the case where the
power of tan x is even and the power of sec x is odd does not have a clear strategy,
so a variety of techniques may be needed.

• 7.3 - Trigonometric Substitution

– This technique exploits trigonometric Pythagorean identities to give useful substitu-
tions that convert quadratic expressions into squares of trig functions. This makes
it particularly useful for eliminating square roots (i.e., when you see a quadratic ex-
pression inside a square root, there’s a good chance that a trig substitution might be
useful).

– One thing that makes this technique more work that a ”simple” substitution is the
work required to convert back to the original variable once an antiderivative is
found. One efficient way to do this is the ”triangle method” as described in lecture
and the text. Be sure to practice this aspect of this technique.

• 7.4 - Partial Fractions

– This technique is applicable to integrands that are rational functions.

– You should know how to apply this technique to any rational function with a de-
nominator that is factorable as a product of linear factors.

– The idea behind this method is completely algebraic: a rational function whose de-
nominator is a product of linear factors can be expressed as the sum of simpler ra-
tional functions, each of which has a denominator which is linear, and a constant
numerator. Such simpler functions are easily integrated.

– Long division of polynomials is a necessary first step when the numerator has de-
gree equal to or greater than the degree of the denominator.

• 7.5 - Strategies for Integration

– This section is perhaps the most important. On the exam, the integrals will simply
be presented to you for you to solve. You will have to decide which technique, or
techniques, to apply to find the antiderivative.

– There are 81 problems in this section, and almost all are good practice. You can skip
problems 10, 26, 61, and 71, since these involve cases of the partial fractions method
that we’re skipping.

• 7.7 - Numerical Integration

– When we want to evaluate a definite integral, and we cannot find an antiderivative
of the integrand, we can approximate the value of the integral. Three techniques
we’ve seen for doing this are



∗ Midpoint Rule

∗ Trapezoid Rule

∗ Simpson’s Rule

All three methods are quite similar, and require us to ”sample” the function at a
number of equally spaces values of x, then combine these value according to a cer-
tain formula which depends on the method.

• 7.8 - Improper Integrals

– There are two types of improper integrals:

1. Those of the form
∫

∞

a

f(x) dx,

∫

a

−∞

f(x) dx, or
∫

∞

−∞

f(x) dx

2. Those of the form
∫

b

a

f(x) dx

where f(x) is discontinuous somewhere on the interval [a, b].

– We treat improper integrals by defining them as the limits of ”proper” integrals. For
instance,

∫

∞

a

f(x) dx = lim
k→∞

∫

k

a

f(x) dx

• 8.1 - Arc Length

– For a curve defined by y = f(x) between x = a and x = b, the length of the curve is
given by

∫

b

a

√

1 + (f ′(x))2 dx

– In practice, such an integral is often, unfortunately, difficult to evaluate. We often
need to resort to Simpson’s rule to evaluate these arc length integrals numerically.


