MATH 126
Exam I Review - Solutions

1. \[\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \left(x - \frac{\pi}{4} \right) - \frac{\sqrt{2}}{2 \cdot 2!} \left(x - \frac{\pi}{4} \right)^2 - \frac{\sqrt{2}}{2 \cdot 3!} \left(x - \frac{\pi}{4} \right)^3 + \ldots \]

2. We know that the Taylor series for \(g(x) \) has the form
 \[\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^k. \]
 So, \(\frac{g^{(3)}(0)}{3!} \) is the coefficient on the \(x^3 \) term of the series given. That is,
 \[\frac{g^{(3)}(0)}{3!} = -25. \]
 So, \(g^{(3)}(0) = -25 \cdot 3! = -150. \)

3. (a) \(T_2(x) = x + x^2 \)
 (b) We may use the fact that
 \[|f'''(x)| = |2e^x(\cos x - \sin x)| \leq 4e^x \leq 4e^{0.1} \]
 on the interval \(-0.1 \leq x \leq 0.1\), so the error is no more than
 \[\frac{4e^{0.1}}{3!} |0.1|^3 = 0.000736781\ldots. \]

4. Since
 \[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \]
 for all \(x \), we have
 \[e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \ldots \]
 and
 \[xe^{x^2} = x + x^3 + \frac{x^5}{2!} + \frac{x^7}{3!} + \ldots \]
 Also,
 \[\frac{1}{4 + x^2} = \left(\frac{1}{4} \right) \frac{1}{1 - \left(\frac{x}{2} \right)^2} = \frac{1}{4} \sum_{k=0}^{\infty} \left(\frac{x}{2} \right)^{2k} = \frac{1}{4} - \frac{x^2}{4 \cdot 4} + \frac{x^4}{4 \cdot 2^4} - \frac{x^6}{4 \cdot 2^6} + \ldots \]
 Combining these results yields
 \[f(x) = -\frac{1}{4} + x + \frac{x^2}{4 \cdot 4} + x^3 + \ldots. \]
5. (a) \(T_2(x) = -2 + 3(x - 1) + 14(x - 1)^2 \)
(b) error \(\leq 0.09375 \).

6. \(\frac{1}{4!} \).

7. It is necessary to find the first two derivatives of \(f(x) \):

 \[
 f'(x) = \frac{1}{x \ln x}
 \]
 \[
 f''(x) = -\frac{1 + \ln x}{(x \ln x)^2}
 \]

 Evaluating \(f, f', \) and \(f'' \) at \(x = e \) gives the coefficients of \(T_2(x) \) for \(f(x) \):

 \[
 T_2(x) = \frac{1}{e}(x - e) - \frac{1}{e^2}(x - e)^2
 \]

8. The first four non-zero terms of the Taylor series for \(\sin x \) are

 \[
 x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}
 \]

 so the first four non-zero terms of the Taylor series for \(\sin x^2 \) are

 \[
 x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!}
 \]

 Integrating this from 0 to 2 gives

 \[
 \left(\frac{1}{3}x^3 - \frac{1}{7 \cdot 3!}x^7 + \frac{1}{11 \cdot 5!}x^{11} - \frac{1}{15 \cdot 7!}x^{15} \right)^2 \bigg|_0^2 = \frac{8}{3} - \frac{128}{42} + \frac{2048}{1320} - \frac{32768}{75600} = 0.7371236.
 \]

9. We use

 \[
 \frac{1}{1 - x} = 1 + x + x^2 + x^3 + \ldots
 \]

 so that

 \[
 \frac{1}{1 - (-5x)} = 1 - 5x + (5x)^2 - (5x)^3 + \ldots
 \]

 and

 \[
 \frac{1}{3 + x} = \frac{1}{3} \left(\frac{1}{1 - (-\frac{1}{3}x)} \right) = \frac{1}{3} \left(1 - \frac{1}{3}x + \left(\frac{1}{3}x \right)^2 - \left(\frac{1}{3}x \right)^3 + \ldots \right) = \frac{1}{3} - \frac{1}{9}x + \frac{1}{27}x^2 - \frac{1}{81}x^3 + \ldots
 \]

 Adding these together, we have

 \[
 \frac{1}{1 + 5x} + \frac{1}{3 + x} = \frac{4}{3} - \frac{46}{9}x + \frac{676}{27}x^2 - \frac{10126}{81}x^3 + \ldots
 \]
10. \[
\frac{dx}{dt} = 2 \sqrt{t} \text{ and } \frac{dy}{dt} = t^2 - \frac{1}{t^3}
\]
\[
\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\frac{4}{t} + t^4 - \frac{2}{t} + \frac{1}{t^6}} = \sqrt{t^4 + \frac{2}{t} + \frac{1}{t^6}} = \sqrt{\left(t^2 + \frac{1}{t^3}\right)^2} = t^2 + \frac{1}{t^3}.
\]

The length of the curve is:
\[
L = \int_{1}^{4} t^2 + \frac{1}{t^3} \ dt = \left. \frac{1}{3} t^3 - \frac{1}{2} t^{\frac{2}{3}} \right|_{1}^{4} = ...\]

11. No. Basically you can show that if there was an intersection, it would occur when \(\sin \theta = 1\). However, there is no point on the curve where \(\sin \theta = 1\) (why not?), so there is no intersection.

12. The intersection will occur when \(r = \frac{1}{3}\), i.e., when \(\theta = 3\). The slope of the tangent line is
\[
\frac{dy}{dx} = -\frac{1}{9} \sin 3 + \frac{1}{3} \cos 3
\]
\[= \frac{-1}{9} \cos 3 - \frac{1}{3} \sin 3
\]

13. Since \(y = r \sin \theta\), \(\csc \theta = \frac{r}{y}\). Note that the curve \(r = 4 \csc \theta\) does not go through the origin since \(\csc \theta\) is never equal to 0. This means that \(r\) is never 0. So,

\(r = 4 \csc \theta \Rightarrow r = \frac{4r}{y} \Rightarrow y = 4\).

That is, the polar curve \(r = 4 \csc \theta\) is the horizontal line \(y = 4\) in the Cartesian plane. The intersection of this line with the line \(y = x\) is the point with Cartesian coordinates \((4, 4)\) and polar coordinates \((4\sqrt{2}, \frac{\pi}{4})\).

14. We need all \(x\) such that the dot product of the two vectors is equal to 0:
\[
\langle 4, 5, x \rangle \cdot \langle 3x, 7, x \rangle = 12x + 35 + x^2 = (x + 7)(x + 5).
\]

This is 0 for \(x = -7\) and \(x = -5\).

15. Many (in fact, infinitely many) correct answers to this one. Here is one.
\[\langle 0, \frac{35}{\sqrt{34}}, \frac{21}{\sqrt{34}} \rangle.\]

16. \[
\theta = \cos^{-1} \left(\frac{4}{\sqrt{26\sqrt{11}}} \right) = 1.80958408790828020.
\]

3
17. Since the vectors are orthogonal,
\[\langle x,3,2 \rangle \cdot \langle 2,3,x \rangle = 0 \]
so
\[2x + 9 + 2x = 0 \]
from which we conclude that \(x = -\frac{9}{4} \).

18. Suppose \(P(x,y,z) \) is a point on the sphere. Let \(A \) be the point \((5,5,5)\) and \(O \) be the origin. Then the distance from \(P \) to \(O \) is twice the distance from \(P \) to \(A \):
\[\sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2} = 2\sqrt{(x-5)^2 + (y-5)^2 + (z-5)^2}. \]
Square both sides and complete the square(s) to get the standard form of the equation for the sphere. Read off the center and radius.
\[\text{ANSWER: center } \left(\frac{20}{3}, \frac{20}{3}, \frac{20}{3} \right), \text{ radius } \frac{10}{\sqrt{3}}. \]

19. The slope of the tangent line to the curve is
\[\frac{dy}{dx} = \frac{2(t+1)}{3(t^2-1)}. \]
The slope of the line, \(x = 3t + 5, y = t - 6 \), is
\[\frac{dy}{dx} = \frac{1}{3}. \]
Set these two slopes equal to each other and solve for \(t \): \(t = 3 \). The point on the curve that corresponds to \(t = 3 \) is \((18,15)\).

20. There are many different ways to solve this. Here’s one:
We know
\[\sin^2 t + \cos^2 t = 1 \]
and
\[\cos t = x \]
and
\[\sin t = y + \cos t = y + x \]
so that
\[(y + x)^2 + x^2 = 1 \]
and we’re done.
Here’s another way: notice that we can write
\[\sin t = \pm \sqrt{1 - \cos^2 t} = \pm \sqrt{1 - x^2} \]
so that
\[y = \pm \sqrt{1 - x^2} - x. \]
21. If \(t = e \) then \(x = 0 \), and \(y = 0 \). We have

\[
\frac{dx}{dt} = \frac{1}{t \ln t} = \frac{1}{e}
\]

when \(t = e \), and

\[
\frac{dy}{dt} = \frac{1}{t} - 2 (\ln t) \frac{1}{t} = \frac{1}{e} - \frac{2}{e} = -\frac{1}{e}
\]

when \(t = e \).

Thus, when \(t = e \),

\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = -1
\]

so the tangent line has equation \(y = -x \).