1. $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2 \cdot 2!}\left(x-\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{2 \cdot 3!}\left(x-\frac{\pi}{4}\right)^{3}+\ldots$
2. We know that the Taylor series for $g(x)$ has the form

$$
\sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!} x^{k} .
$$

So, $\frac{g^{(3)}(0)}{3!}$ is the coefficient on the x^{3} term of the series given. That is,

$$
\frac{g^{(3)}(0)}{3!}=-25
$$

So, $g^{(3)}(0)=-25 \cdot 3!=-150$.
3. (a) $T_{2}(x)=x+x^{2}$
(b) We may use the fact that

$$
\left|f^{\prime \prime \prime}(x)\right|=\left|2 e^{x}(\cos x-\sin x)\right| \leq 4 e^{x} \leq 4 e^{0.1}
$$

on the interval $-0.1 \leq x \leq 0.1$, so the error is no more than

$$
\frac{4 e^{0.1}}{3!}|0.1|^{3}=0.000736781 \ldots \ldots
$$

4. Since

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

for all x, we have

$$
e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\cdots
$$

and

$$
x e^{x^{2}}=x+x^{3}+\frac{x^{5}}{2!}+\frac{x^{7}}{3!}+\cdots
$$

Also,

$$
\frac{1}{4+x^{2}}=\left(\frac{1}{4}\right) \frac{1}{1-\left(-\left(\frac{x}{2}\right)^{2}\right)}=\frac{1}{4} \sum_{k=0}^{\infty}\left(-\left(\frac{x}{2}\right)^{2}\right)^{k}=\frac{1}{4}-\frac{x^{2}}{4 \cdot 4}+\frac{x^{4}}{4 \cdot 2^{4}}-\frac{x^{6}}{4 \cdot 2^{6}}+\cdots
$$

Combining these results yields

$$
f(x)=-\frac{1}{4}+x+\frac{x^{2}}{4 \cdot 4}+x^{3}+\cdots
$$

5. (a) $T_{2}(x)=-2+3(x-1)+14(x-1)^{2}$
(b) error ≤ 0.09375.
6. $\frac{1}{4!}$.
7. It is necessary to find the first two derivatives of $f(x)$:

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{x \ln x} \\
f^{\prime \prime}(x)=-\frac{1+\ln x}{(x \ln x)^{2}}
\end{gathered}
$$

Evaluating f, f^{\prime}, and $f^{\prime \prime}$ at $x=e$ gives the coefficients of $T_{2}(x)$ for $f(x)$:

$$
T_{2}(x)=\frac{1}{e}(x-e)-\frac{1}{e^{2}}(x-e)^{2}
$$

8. The first four non-zero terms of the Taylor series for $\sin x$ are

$$
x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}
$$

so the first four non-zero terms of the Taylor series for $\sin x^{2}$ are

$$
x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}
$$

Integrating this from 0 to 2 gives

$$
\left.\left(\frac{1}{3} x^{3}-\frac{1}{7 \cdot 3!} x^{7}+\frac{1}{11 \cdot 5!} x^{11}-\frac{1}{15 \cdot 7!} x^{15}\right)\right|_{0} ^{2}=\frac{8}{3}-\frac{128}{42}+\frac{2048}{1320}-\frac{32768}{75600}=0.7371236 .
$$

9. We use

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

so that

$$
\frac{1}{1-(-5 x)}=1-5 x+(5 x)^{2}-(5 x)^{3}+\ldots
$$

and
$\frac{1}{3+x}=\left(\frac{1}{3}\right) \frac{1}{1-\left(-\frac{1}{3} x\right)}=\frac{1}{3}\left(1-\frac{1}{3} x+\left(\frac{1}{3} x\right)^{2}-\left(\frac{1}{3} x\right)^{3}+\ldots\right)=\frac{1}{3}-\frac{1}{9} x+\frac{1}{27} x^{2}-\frac{1}{81} x^{3}+\ldots$
Adding these together, we have

$$
\frac{1}{1+5 x}+\frac{1}{3+x}=\frac{4}{3}-\frac{46}{9} x+\frac{676}{27} x^{2}-\frac{10126}{81} x^{3}+\ldots
$$

10.

$$
\begin{gathered}
\frac{d x}{d t}=\frac{2}{\sqrt{t}} \text { and } \frac{d y}{d t}=t^{2}-\frac{1}{t^{3}} \\
\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{\frac{4}{t}+t^{4}-\frac{2}{t}+\frac{1}{t^{6}}}=\sqrt{t^{4}+\frac{2}{t}+\frac{1}{t^{6}}}=\sqrt{\left(t^{2}+\frac{1}{t^{3}}\right)^{2}}=t^{2}+\frac{1}{t^{3}} .
\end{gathered}
$$

The length of the curve is:

$$
L=\int_{1}^{4} t^{2}+\frac{1}{t^{3}} d t=\frac{1}{3} t^{3}-\left.\frac{1}{2 t^{2}}\right|_{1} ^{4}=\ldots
$$

11. No. Basically you can show that if there was an intersection, it would occur when $\sin \theta=1$. However, there is no point on the curve where $\sin \theta=1$ (why not?), so there is no intersection.
12. The intersection will occur when $r=\frac{1}{3}$, i.e., when $\theta=3$. The slope of the tangent line is

$$
\frac{d y}{d x}=\frac{-\frac{1}{9} \sin 3+\frac{1}{3} \cos 3}{-\frac{1}{9} \cos 3-\frac{1}{3} \sin 3}
$$

13. Since $y=r \sin \theta, \csc \theta=\frac{r}{y}$. Note that the curve $r=4 \csc \theta$ does not go through the origin since $\csc \theta$ is never equal to 0 . This means that r is never 0 . So,

$$
r=4 \csc \theta \Rightarrow r=\frac{4 r}{y} \Rightarrow y=4
$$

That is, the polar curve $r=4 \csc \theta$ is the horizontal line $y=4$ in the Cartesian plane. The intersection of this line with the line $y=x$ is the point with Cartesian coordinates $(4,4)$ and polar coordinates $\left(4 \sqrt{2}, \frac{\pi}{4}\right)$.
14. We need all x such that the dot product of the two vectors is equal to 0 :

$$
\langle 4,5, x\rangle \cdot\langle 3 x, 7, x\rangle=12 x+35+x^{2}=(x+7)(x+5) .
$$

This is 0 for $x=-7$ and $x=-5$.
15. Many (in fact, infinitely many) correct answers to this one. Here is one. $\left\langle 0, \frac{35}{\sqrt{34}}, \frac{21}{\sqrt{34}}\right\rangle$.
16.

$$
\theta=\cos ^{-1}\left(\frac{4}{\sqrt{26} \sqrt{11}}\right)=1.80958408790828020 .
$$

17. Since the vectors are orthogonal,

$$
<x, 3,2>\cdot<2,3, x>=0
$$

so

$$
2 x+9+2 x=0
$$

from which we conclude that $x=-\frac{9}{4}$.
18. Suppose $P(x, y, z)$ is a point on the sphere. Let A be the point $(5,5,5)$ and O be the origin. Then the distance from P to O is twice the distance from P to A :

$$
\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}=2 \sqrt{(x-5)^{2}+(y-5)^{2}+(z-5)^{2}} .
$$

Square both sides and complete the square(s) to get the standard form of the equation for the sphere. Read off the center and radius.
ANSWER: center $\left(\frac{20}{3}, \frac{20}{3}, \frac{20}{3}\right)$, radius $\frac{10}{\sqrt{3}}$.
19. The slope of the tangent line to the curve is

$$
\frac{d y}{d x}=\frac{2(t+1)}{3\left(t^{2}-1\right)}
$$

The slope of the line, $x=3 t+5, y=t-6$, is

$$
\frac{d y}{d x}=\frac{1}{3} .
$$

Set these two slopes equal to each other and solve for $t: t=3$. The point on the curve that corresponds to $t=3$ is $(18,15)$.
20. There are many different ways to solve this. Here's one:

We know

$$
\sin ^{2} t+\cos ^{2} t=1
$$

and

$$
\cos t=x
$$

and

$$
\sin t=y+\cos t=y+x
$$

so that

$$
(y+x)^{2}+x^{2}=1
$$

and we're done.
Here's another way: notice that we can write

$$
\sin t= \pm \sqrt{1-\cos ^{2} t}= \pm \sqrt{1-x^{2}}
$$

so that

$$
y= \pm \sqrt{1-x^{2}}-x
$$

21. If $t=e$ then $x=0$, and $y=0$. We have

$$
\frac{d x}{d t}=\frac{1}{t \ln t}=\frac{1}{e}
$$

when $t=e$, and

$$
\frac{d y}{d t}=\frac{1}{t}-2(\ln t) \frac{1}{t}=\frac{1}{e}-\frac{2}{e}=-\frac{1}{e}
$$

when $t=e$.
Thus, when $t=e$,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=-1
$$

so the tangent line has equation $y=-x$.

