Euler's Formula via Taylor Series Worksheet

In this worksheet, you will prove the formula

$$
e^{i \theta}=\cos \theta+i \sin \theta .
$$

This is perhaps the most famous of all formulas in mathematics. It is known as Euler's formula, for Leonard Euler, a Swiss mathematician who lived from 1707 to 1783 . The formula was actually first proved by Roger Cotes in 1714, an English mathematician who lived from 1682 to 1716.

The i in the formula is known as the imaginary unit. It is defined to be the non-real number with the property that

$$
i^{2}=-1
$$

Since i is not a real number, it is said to be imaginary, and it gives rise to the set of complex numbers. Complex numbers are numbers of the form

$$
a+b i
$$

where a and b are real numbers. Euler's formula expresses an equality between two ways of representing a complex number.

You can use Taylor series to prove the formula.
Here are a few steps.

1. The first thing to do is to check out what happens to powers of i. Since

$$
i^{2}=-1,
$$

we have $i^{3}=-i$. What is $i^{4} ? i^{5}$? i^{62} ? What is i^{n} for a general positive integer n ?
2. The taylor series for e^{x},

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

converges for all real x. In fact, for any complex number x, the series converges to e^{x}. Use the last step to write out the first 8 (or more) terms of the series for

$$
e^{i \theta} .
$$

3. How does this compare to the Taylor series for $\cos x$ and $\sin x$? Show how this gets us Euler's formula.

This is a bit of a casual proof. By getting a general expression for the n-th term of the series for $e^{i \theta}$, and our knowledge of the n-th term of the series for $\cos \theta$ and $\sin \theta$, the proof could be made completely solid.

What can you do with Euler's formula?

1. If you let $\theta=\pi$, Euler's formula simplifies to what many claim is the most beautiful equation in all of mathematics. It does tie together three important constants, e, i, and π rather nicely.
2. We can get quick proofs for some trig identities from Euler's formula. We need this fact: if a, b, c, and d are real numbers, and

$$
a+b i=c+d i
$$

then $a=c$ and $b=d$. That is, if two complex numbers are equal, then their real parts are equal and their imaginary parts are equal.
Now, replacing θ by $n \theta$ in Euler's formula we have

$$
e^{i n \theta}=\cos (n \theta)+i \sin (n \theta)
$$

However, the left side can be written as

$$
e^{i n \theta}=\left(e^{i \theta}\right)^{n}=(\cos \theta+i \sin \theta)^{n}
$$

3. Let $n=2$ and expand to prove the two double-angle formulas

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

and

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

4. Let $n=3$ and expand to prove the less common triple-angle formulas

$$
\cos 3 \theta=\cos \theta\left(\cos ^{2} \theta-3 \sin ^{2} \theta\right)=\cos \theta\left(4 \cos ^{2} \theta-3\right)
$$

and

$$
\sin 3 \theta=\sin \theta\left(3 \cos ^{2} \theta-\sin ^{2} \theta\right)=\sin \theta\left(3-4 \sin ^{2} \theta\right)
$$

You can see that, by letting n be other integers, many other formulas are possible.

