
Euler’s Formula via Taylor Series Worksheet

In this worksheet, you will prove the formula

eiθ = cos θ + i sin θ.

This is perhaps the most famous of all formulas in mathematics. It is known as Euler’s formula,
for Leonard Euler, a Swiss mathematician who lived from 1707 to 1783. The formula was
actually first proved by Roger Cotes in 1714, an English mathematician who lived from 1682 to
1716.

The i in the formula is known as the imaginary unit. It is defined to be the non-real number
with the property that

i2 = −1.

Since i is not a real number, it is said to be imaginary, and it gives rise to the set of complex
numbers. Complex numbers are numbers of the form

a + bi

where a and b are real numbers. Euler’s formula expresses an equality between two ways of
representing a complex number.

You can use Taylor series to prove the formula.

Here are a few steps.

1. The first thing to do is to check out what happens to powers of i. Since

i2 = −1,

we have i3 = −i. What is i4? i5? i62? What is in for a general positive integer n?

2. The taylor series for ex,

ex =
∞
∑

k=0
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x2

2!
+

x3

3!
+ · · ·

converges for all real x. In fact, for any complex number x, the series converges to ex.

Use the last step to write out the first 8 (or more) terms of the series for

eiθ.

3. How does this compare to the Taylor series for cos x and sin x? Show how this gets us
Euler’s formula.



This is a bit of a casual proof. By getting a general expression for the n-th term of the series for
eiθ, and our knowledge of the n-th term of the series for cos θ and sin θ, the proof could be made
completely solid.

What can you do with Euler’s formula?

1. If you let θ = π, Euler’s formula simplifies to what many claim is the most beautiful
equation in all of mathematics. It does tie together three important constants, e, i, and π

rather nicely.

2. We can get quick proofs for some trig identities from Euler’s formula. We need this fact:
if a, b, c, and d are real numbers, and

a + bi = c + di

then a = c and b = d. That is, if two complex numbers are equal, then their real parts are
equal and their imaginary parts are equal.

Now, replacing θ by nθ in Euler’s formula we have

einθ = cos(nθ) + i sin(nθ)

However, the left side can be written as

einθ =
(

eiθ
)n

= (cos θ + i sin θ)n

3. Let n = 2 and expand to prove the two double-angle formulas

cos 2θ = cos2 θ − sin2 θ

and
sin 2θ = 2 sin θ cos θ

4. Let n = 3 and expand to prove the less common triple-angle formulas

cos 3θ = cos θ
(

cos2 θ − 3 sin2 θ
)

= cos θ
(

4 cos2 θ − 3
)

and
sin 3θ = sin θ

(

3 cos2 θ − sin2 θ
)

= sin θ
(

3 − 4 sin2 θ
)

You can see that, by letting n be other integers, many other formulas are possible.


