Linear Approximation/Newton's Method Worksheet

The tangent line approximation is our starting point in Math 126. The tangent line to the graph of $y=f(x)$ at the point $(a, f(a))$ is the graph of the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

For x near $a, L(x)$ is approximately equal to $f(x)$. How good this approximation is, and how close x needs to be to a in order for this approximation to be useful, will be our first concern in the course. The first few exercises below give you a chance to experiment with this topic.

For each of the following functions, find $L(x)$ at the point $x=a$ given. Then, determine, roughly, how close x has to be to a to get $L(x)$ to be within 0.01 of $f(x)$. Do this with a calculator: try a bunch of different values of x near a and see how much $f(x)$ and $L(x)$ differ.

1. $f(x)=x^{2}, a=2$
2. $f(x)=\ln (\ln x), a=e^{2}$
3. $f(x)=\tan (x), a=1.5$

A very famous and powerful application of the tangent line approximation is Newton's Method for finding approximations of roots of equations. Say we want to find a solution to an equation

$$
f(x)=0 .
$$

So, we want a value, r, such that $f(r)=0$. If the function f is not of a rather particular type, such as linear or quadratic, we generally would have a hard time finding r. In such cases, we often resort to finding an approximation of r using Newton's Method, which is as follows:

1. Start with an estimate (i.e., a guess) of r. Let's call that guess r_{1}.
2. Create the recursive formula:

$$
r_{n+1}=r_{n}-\frac{f\left(r_{n}\right)}{f^{\prime}\left(r_{n}\right)}
$$

3. Use the formula repeatedly, to generate $r_{2}, r_{3}, r_{4}, \ldots$, until the values you get don't change much, or until you get tired of it.

For instance, suppose we want a root of the equation $x^{2}-2=0$. We could solve this algebraically, but for the sake of example, let's see what Newton's Method does with it.

Say we start with the guess $r_{1}=1.5$. Our recursive formula is

$$
r_{n+1}=r_{n}-\frac{r_{n}^{2}-2}{2 r_{n}}
$$

Plugging in $r_{1}=1.5$ gives us

$$
r_{2}=1.5-\frac{1.5^{2}-2}{2(1.5)}=1.416666666666666666666666666
$$

Plugging that into the formula, and repeating, gives us the sequence

$$
\begin{aligned}
& r_{3}=1.414215686274509803921568627 \\
& r_{4}=1.414213562374689910626295578 \\
& r_{5}=1.414213562373095048801689623 \\
& r_{6}=1.414213562373095048801688724 \\
& r_{7}=1.414213562373095048801688724
\end{aligned}
$$

Since r_{6} and r_{7} are equal, every additional application of the formula will give the same result, so this is our best approximation of the root of the equation $x^{2}-2=0$ that we can get with this method. (This all depends as well on the accuracy of our calculating device: if your calculator presents fewer digits, you might have seen no change earlier in the sequence).

Exercises

1. Use Newton's method to find a solution to $x^{2}-17=0$.
2. (a) Show that when applying Newton's method to equations of the form $x^{2}-B=0$, the result can be simplified to

$$
r_{n+1}=\frac{1}{2}\left(r_{n}+\frac{B}{r_{n}}\right)
$$

(b) Use the simplified formula to find the square root of 23.
(c) What effect does using different starting guesses have?
3. Find the solution to $\cos x=x$ (make a sketch to help you make a first guess).
4. Use Newton's method to find $\ln 2$ (hint: start by finding an equation whose solution is $\ln 2)$. What's a reasonable initial guess? What happens if you start with an initial guess of -4 ?

