For a curve with position function $\vec{r}^{\prime}(t)$ we have the formula

$$
\kappa(t)=\frac{\left|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right|}{\left|\vec{r}^{\prime}(t)\right|^{3}}
$$

for the curvature at the point given by $\vec{r}(t)$. In this worksheet, you will develop two practical formulas for finding the curvature of a plane curve.

1. Suppose $\vec{r}(t)$ defines a curve in the $x y$-plane. Then

$$
\vec{r}(t)=\langle f(t), g(t), 0\rangle
$$

for some real-valued functions f and g. Find $\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|$.
2. Use your last calculation to show that

$$
\kappa=\frac{\left|f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right|}{\left(f^{\prime 2}+g^{\prime 2}\right)^{3 / 2}} .
$$

3. Use this formula to find the curvature of the archimedean spiral

$$
x=t \cos t, y=t \sin t
$$

at the origin. Is the radius of curvature what you expected? Show that the radius of curvature is asymptotic to t as t goes to infinity.
4. Now, consider a plane curve defined by $y=f(x)$. Give a vector function $\vec{r}(t)$ that defines this curve.
5. Show that the curvature at the point (x, y) on this curve is

$$
\kappa=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

6. What does this last formula suggest about the curvature at points of inflection?
7. Consider the curve $y=x^{3}$. At what points is the curvature maximal?
