Writing Problem \#2 Solution

The problem: For what values of a and b is

$$
\lim _{x \rightarrow 0} \frac{\sqrt{a x+b}-3}{x}=1 ?
$$

The solution: We may rewrite the limit as follows:

$$
\lim _{x \rightarrow 0} \frac{\sqrt{a x+b}-3}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{a x+b}-3}{x} \frac{\sqrt{a x+b}+3}{\sqrt{a x+b}+3}=\lim _{x \rightarrow 0} \frac{a x+b-9}{x(\sqrt{a x+b}+3)}=1
$$

If the limit of the numerator, i.e.

$$
\lim _{x \rightarrow 0}(a x+b-9)
$$

is not zero, then the quotient

$$
\frac{a x+b-9}{x(\sqrt{a x+b}+3)}
$$

will be unbounded (and thus not approach 1) as x approaches 0 , since

$$
\lim _{x \rightarrow 0} x(\sqrt{a x+b}+3)=0
$$

Hence, it must be the case that

$$
\lim _{x \rightarrow 0}(a x+b-9)=b-9=0
$$

and so we conclude that $b=9$.
Hence,

$$
1=\lim _{x \rightarrow 0} \frac{\sqrt{a x+9}-3}{x}=\lim _{x \rightarrow 0} \frac{a x+9-9}{x(\sqrt{a x+9}+3)}=\lim _{x \rightarrow 0} \frac{a}{\sqrt{a x+9}+3}=\frac{a}{\sqrt{9}+3}=\frac{a}{6}
$$

and so $a=6$.
Thus, $a=6$ and $b=9$.

