The Problem: Suppose a projectile is launched from (0,0) with velocity v_0 at an angle θ above the positive x-axis. We want the projectile to make it over a wall that is r units away horizontally, and h units high. If gravity is the only force acting on the projectile, what is the minimum possible value of v_0 that will get the projectile over the wall?

Solution: Under the influence of gravity only, which results in vertical acceleration of $-g$, we have parametric equations for the projectile’s motion:

$$x = v_0 t \cos \theta, \quad y = v_0 t \sin \theta - \frac{1}{2} g t^2.$$

By solving for x, we can get the cartesian equation for the projectiles location

$$y = x \tan \theta - \frac{gx^2}{2v_0^2 \cos^2 \theta}.$$

If the velocity v_0 is the minimum which gets the projectile over the wall, the path of the projectile must pass through the point (r, h). Hence, we know

$$h = r \tan \theta - \frac{gr^2}{2v_0^2 \cos^2 \theta}.$$

From this, we can solve for v_0^2:

$$v_0^2 = \frac{\frac{1}{2} gr^2}{\cos^2 \theta (r \tan \theta - h)}$$

Minimizing v_0 is equivalent to minimizing v_0^2, which is equivalent to maximizing the denominator above. Let

$$w = \cos^2 \theta (r \tan \theta - h)$$

We want to maximize w. Suppose

$$\frac{dw}{d\theta} = -2 \sin \theta \cos \theta (r \tan \theta - h) + r = 0.$$

Let $z = \sin \theta$. Then we can write

$$-2x \sqrt{1 - z^2} \left(r \frac{z}{\sqrt{1 - z^2}} - h \right) + r = 0$$

which simplifies to

$$4h^2 z^2 (1 - z^2) = 4r^2 z^4 - 4r^2 z^2 + r^2.$$

Let $\alpha = z^2$. Then we have

$$0 = 4(r^2 + h^2) \alpha^2 - 4(r^2 + h^2) \alpha + r^2.$$
The quadratic formula, and some simplification yields

\[\alpha = \frac{1}{2} \pm \frac{h}{2\sqrt{r^2 + h^2}} \]

By some argument to be added later, we can conclude that

\[\alpha = \frac{1}{2} + \frac{h}{2\sqrt{r^2 + h^2}} \]

Hence the optimal \(\theta \) has

\[\sin \theta = \sqrt{\frac{1}{2} + \frac{h}{2\sqrt{r^2 + h^2}}} \]

and

\[\cos \theta = \sqrt{\frac{1}{2} - \frac{h}{2\sqrt{r^2 + h^2}}} \]

and

\[\tan^2 \theta = \frac{\frac{1}{2} + \frac{h}{2\sqrt{r^2 + h^2}}}{\frac{1}{2} - \frac{h}{2\sqrt{r^2 + h^2}}} = \frac{\sqrt{r^2 + h^2} + h}{\sqrt{r^2 + h^2} - h} \]

This then yields

\[\tan \theta = \frac{\sqrt{r^2 + h^2} + h}{r} \]

Plugging this all into

\[v_0^2 = \frac{\frac{1}{2}gr^2}{\cos^2 \theta (r \tan \theta - h)} \]

and simplifying, we get

\[v_0^2 = \frac{gr^2}{\sqrt{r^2 + h^2} - h} = g(\sqrt{r^2 + h^2} + h) \]

so the optimal velocity \(v_0 \) is

\[v_0 = \sqrt{g \left(\sqrt{r^2 + h^2} + h \right)} \]