1. (12 points, 3pts each) Using the derivative rules you have learned, compute the derivatives. You do not need to simplify your final answer. You must BOX YOUR FINAL ANSWER.

(a) \(y = \sin^{-1}(\ln(x^2 + 1)) \),

\[
y' = \frac{1}{\sqrt{1-(\ln(x^2 + 1))^2}} \cdot \frac{1}{x^2 + 1} \cdot 2x
\]

(b) \(y = \sin^2(3t^2 - t + 1) \),

\[
\frac{dy}{dt} = 2\sin(3t^2 - t + 1) \cdot \cos(3t^2 - t + 1) \cdot (6t - 1)
\]
1. (cont.) (c) If \(f(x) = \sqrt{x} + \sqrt{2x} \),
\[
f'(x) = \frac{1}{2 \sqrt{x+\sqrt{2x}}}.
\]
1 pt numerator
1 pt numerator
1 pt numerator
1 pt numerator

(d) \(y = e^{3x} \),
\[
y'(x) = \frac{d}{dx} e^{3x} = 3e^{3x}.
\]
0 pt did this
0 pt get \(y' \)
0 pt part
0 pt get \(y' \)
0 pt part

\[
\ln y = \ln x \ln x = \ln x \cdot \ln x = (\ln x)^2.
\]
0 pt got this
0 pt did this

\[
y' = \frac{y'}{y} = 2 \ln x \cdot \frac{1}{x}.
\]
0 pt got this
0 pt did this

\[
y' = y \cdot \frac{2 \ln x}{x} = \frac{\ln x \cdot 2 \ln x}{x}.
\]
2. (9 points) The graphs of \(f(x) = x^2 + 1 \) and \(g(x) = -x^2 + x \) are pictured below. Find the equation of the pictured line which is simultaneously tangent to both curves.

Label tangent points:

Calculate slope of \(L \) three ways:

\[
\text{slope } L = \frac{a^2 + 1 - (-b + x)}{a - b} = \frac{a^2 + b^2 - b + 1}{a - b}
\]

Combine to get:

\[
-2b + 1 = \frac{(-b + \frac{x}{2})^2 + b^2 - b + 1}{-b + \frac{x}{2} - b} = \frac{b^2 - b + \frac{x}{2} + b^2 - b + 1}{-2b + \frac{x}{2} - b}
\]

Get a value for \(b \):

\[
(2b + 1)(-2b + \frac{x}{2}) = 2b^2 - 2b + \frac{x}{4} = 0
\]

Set \(b \) value equal to 0:

\[
b = \frac{1 + \sqrt{1 + 4\frac{\frac{x}{4}}{2}}}{2} = 1 + \frac{\sqrt{x}}{2}
\]

Conclude \(b = \frac{1 - \sqrt{x}}{2} \):

\[
-2b + 1 = 1 + \frac{\sqrt{x}}{2} + \frac{1}{2} = \frac{1 + \sqrt{x}}{2}
\]

Equation of the line:

\[
y = \frac{1 + \sqrt{x}}{2} (x - \frac{1 + \sqrt{x}}{2}) + \frac{(1 + \sqrt{x})^2}{4} + 1
\]

Note: The equation is given; no partial credit.
3. (10 points) The graph of the equation $2(x^2 + y^2)^3 = 25(x^2 - y^2)$ is pictured below.

(a) (6pts) Find the equation of the tangent line to the curve at $(3, 1)$.

$2, 2(4x^2y^2 - 2xy^3) = 25(x^2 - y^2)$

End @ $(3, 1)$:

$4(9 + 1)(6 - 2y') = 25(6 - 2y')$

$2y' + 80 = 150 - 50y'$

$130 + 50y' = -90$

$y' = -\frac{170}{50}$

$y' = -\frac{17}{5}$

(b) (4pts) Let $Q = (0, 1.01)$ be the point on the curve in the first quadrant with y-coordinate 1.01. Using linear approximation, estimate the value of a. Leave your answer in exact form.

$y' = -\frac{9}{13} (x - 3) + 1$

$\frac{x}{100} = -\frac{9}{13} (x - 3)$

$\frac{x}{100} = -\frac{9}{13}$

$3x = 900$

$x = \frac{900}{3}$

$x = 300$
4. [8 points] Sand is being dumped from a conveyor belt at a rate of 2 m³/min and forms a right circular cone. Assume the radius of the cone is always three times as large as the height of the cone. (Recall, the volume of a right circular cone is \(V = \frac{1}{3} \pi r^2 h \), where \(r \) is the radius of the circular base and \(h \) is the height of the cone.) Find the rate at which the height of the cone is increasing when the height is 9 m.

We know \(\frac{dV}{dt} = 2 \); we want \(\frac{dh}{dt} \) when \(h = 9 \).

\[
V = \frac{1}{3} \pi r^2 h \quad \Rightarrow \quad 3h = \sqrt{\frac{3V}{\pi}}
\]

\[
V = \frac{1}{3} \pi (3h)^2 h = 3 \pi h^3 \quad \Rightarrow \quad V = \frac{3 \pi h^3}{3} = \frac{1}{3} \pi r^2 h
\]

\[
\Rightarrow \quad \frac{dV}{dt} = 9 \pi h^2 \frac{dh}{dt}
\]

\[
\frac{dh}{dt} = \frac{dV}{dt} \div (9 \pi h^2)
\]

If \(h = 9 \) and \(\frac{dV}{dt} = 2 \), \(\frac{dh}{dt} = \frac{2}{9 \pi \cdot 9^2} = \frac{2}{729 \pi} \)

(1 pt) Plugged data in correctly

(1 pt) Correct final answer. Error appears fine, answer ok.
5. (11 points) A particle is moving in the xy-plane with parametric equations

\[x(t) = e^t + e^{-t} \]
\[y(t) = e^t \]

at time \(t \) seconds, \(t \geq 0 \). The units on each axis are centimeters (cm). Recall that the speed of the particle is given by the formula

\[s(t) = \sqrt{(x'(t))^2 + (y'(t))^2}. \]

This problem studies the values of the speed on the time interval \([0,1]\).

(a) (3pts) Find \(s(t) \) as an explicit function of \(t \).

\[s(t) = \sqrt{(e^t - e^{-t})^2 + (e^t + e^{-t})^2} = \sqrt{e^{2t} - 2 + e^{2t} + e^{-2t}} \]

They need not simplify.

(b) (2pts) Calculate \(s(0) \) and \(s(1) \).

\[s(0) = \sqrt{1 - 2 + 1} = 1 \]
\[s(1) = \sqrt{e^{2} - 2 + \frac{2}{e^2}} \approx 2.379 \]

(c) (6pts) Find the critical numbers for \(s(t) \) and the minimum speed on the time interval \([0,1]\).

\[s'(t) = \frac{2e^{2t} - 4e^{-2t}}{2e^{2t} - 2 + 2e^{-2t}} = \frac{e^{2t} - 2 - 2e^{-2t}}{e^{2t} + 2e^{-2t}} \]

\[s'(t) = 0 \Rightarrow 0 = e^{2t} - 2 + 2e^{-2t} \Rightarrow e^{4t} = \frac{ln^2 2}{4} \approx 0.1173 \]

\[s\left(\frac{ln 2}{4} \right) = \sqrt{1 - 2 + \frac{2}{e^{ln 2}}} \approx \sqrt{2} \approx 1.414 \]

\[\text{min speed occurs at time } \frac{ln 2}{4} \text{ and } \approx \sqrt{2} - 2 + \frac{ln 2}{4} \]