1. (a) Prove that \(GL_n(\mathbb{R}) \) is a group.
(b) Prove that \(S_n \) is a group.

Proof. (a) The \(n \times n \) general linear group over \(\mathbb{R} \)

\[GL_n(\mathbb{R}) = \{ A = (a_{ij})_{1 \leq i,j \leq n} | a_{ij} \in \mathbb{R}, \det A \neq 0 \} \]

The identity matrix \(I \in GL_n(\mathbb{R}) \), so \(GL_n(\mathbb{R}) \) is not empty. For any \(A, B \in GL_n(\mathbb{R}) \), \(\det A \neq 0 \) and \(\det B \neq 0 \), then \(\det AB = \det A \det B \neq 0 \), so that \(AB \in GL_n(\mathbb{R}) \).

Obviously the associative law holds and \(I \) is the identity element.

Finally, if \(A \in GL_n(\mathbb{R}) \), then \(A^{-1} \) exists and \(\det A^{-1} = (\det A)^{-1} \neq 0 \), so \(A^{-1} \in GL_n(\mathbb{R}) \). Therefore \(GL_n(\mathbb{R}) \) is a group. \(\square \)

(b) Any element \(\sigma \) of \(S_n \) can be described as \(\left(\begin{array}{cccc} 1 & 2 & 3 & \cdots & n \\ i_1 & i_2 & i_3 & \cdots & i_n \end{array} \right) \), which denotes the permutation that maps \(1 \mapsto i_1, 2 \mapsto i_2, \ldots, n \mapsto i_n \). Then the inverse of \(\sigma \)

\[\left(\begin{array}{cccc} i_1 & i_2 & i_3 & \cdots & i_n \\ 1 & 2 & 3 & \cdots & n \end{array} \right) \in S_n. \]

The product \(\sigma \tau \) of two elements of \(S_n \) is the composition of function \(\tau \) followed by \(\sigma \), so that \(\sigma \tau \in S_n \). The identity map is the identity element in \(S_n \). Therefore \(S_n \) is a group. \(\square \)

2. Let \(G \) be a group, with multiplicative notation. We define an opposite group \(G^0 \) with law of composition \(a \circ b \) as follows: The underlying set is the same as \(G \), but the law of composition is the opposite; that is, we define \(a \circ b = ba \). Prove that this define a group.

Proof. Clearly the law of composition holds in \(G^0 \) and the identity element 1 in \(G \) is also an identity element in \(G^0 \). Second, the law of associative: \((a \circ b) \circ c = ba \circ c = cba = a \circ (cb) = a \circ (b \circ c) \). Finally, \(a \circ a^{-1} = 1 \) so every element has an inverse in \(G^0 \). Here \(a^{-1} \) is the inverse of \(a \) in \(G \). \(\square \)

3. Determine the elements of the cyclic group generated by the matrix \(\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \) explicitly.

Solution. Let \(A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \). Then \(A^2 = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}, A^3 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, A^4 = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}, A^5 = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \) and \(A^6 = I \) the identity matrix. Therefore the group generated by \(A \) is isomorphic to the cyclic group of order 6. \(\square \)
4. Which of the following are subgroups?
 (a) $GL_n(\mathbb{R}) \subset GL_n(\mathbb{C})$.
 (b) $\{1, -1\} \subset \mathbb{R}^\times$.
 (c) The set of positive integers in \mathbb{Z}^+.
 (d) The set of positive reals in \mathbb{R}^\times.
 (e) The set of all matrices $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, with $a \neq 0$, in $GL_2(\mathbb{R})$.

 Solution. (a), (b), (d), (e). □

5. Let $U_n = \{n\text{th roots of unity}\} \subseteq \mathbb{C}, n \geq 2$. Prove that U_n is a commutative subgroup of \mathbb{C} under the multiplication operation and $|U_n| = n$. Draw a picture of U_n, when $n = 4, 6, 8$ and describe how the operation works geometrically. Verify there is an element $\xi_n \in U_n$ with the property that $\langle \xi_n \rangle = U_n$ and describe ξ_n geometrically for $1 \leq k \leq n$. (ξ is called the primitive root of unity.)

 Proof. $U_n = \{e^{i\frac{2\pi k}{n}} | 0 \leq k \leq n - 1\}$. It is easy to see that U_n is a commutative subgroup of \mathbb{C} and $|U_n| = n$. We may take $\xi_n = e^{i\frac{2\pi}{n}}$ and then U_n is a cyclic group generated by ξ_n. □

6. Let $S^1 = \{\text{unit circle}\} \subseteq \mathbb{C}$. Prove S^1 is a subgroup of \mathbb{C} under multiplication.

 Proof. $S^1 = \{e^{i\theta} | -\pi \leq \theta \leq \pi\}$. Then $e^{i\theta}e^{i\eta} = e^{i(\theta+\eta)} \in S^1$ and $(e^{i\theta})^{-1} = e^{-i\theta} \in S^1$, so that S^1 is a subgroup of \mathbb{C}. □

7. Let $G = \mathbb{Z}$ and let the operation $a * b = a - b(\text{substraction})$; Is G a group? Explain.

 Proof. No. It does not satisfy the associative law: for any $a, b, c \in G$, we have $(a * b) * c = (a - b) - c; a * (b * c) = a - (b - c) = a - b + c \neq (a * b) * c$.

 OR: G dose not have an identity element. Suppose there is an identity element in G. say e, then for any nonzero integer a we have $a * e = a - e = a$, so $e = 0$. But $e * a = 0 - a = -a \neq a$. □

8. Let $G = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$. Prove that G is a group under “+”. Prove that $G^* = \{\text{nonzero elements of } G\}$ is a group under multiplication.

 Proof. Obviously both G and G^* are non-empty. (1) Let $a + b\sqrt{2}, c + d\sqrt{2} \in G$. Then $(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \in G$. 0 is the identity element in G and the inverse of $a + b\sqrt{2}$ is $-a + (-b)\sqrt{2}$. Clearly the associative law holds. (2) Let $a + b\sqrt{2}, c + d\sqrt{2} \in G^*$. Then $0 \neq (a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in G^*$. 1 is the identity element in G^* and the inverse of $a + b\sqrt{2}(a + b\sqrt{2} \neq 0)$ is $\frac{a - b\sqrt{2}}{a + b\sqrt{2}}(a - b\sqrt{2}) = \frac{a^2 - 2ab - b^2}{a^2 - 2ab + b^2}\sqrt{2} \in G^*$. Here $a - b\sqrt{2} \neq 0$ because otherwise $\frac{a}{b} = \sqrt{2}$ but $\frac{a}{b} \notin \mathbb{Q}$ which is a contradiction. Again clearly the associative law holds. □

9. Let $G = \mathbb{Q} - \{2\}$. Define $a * b = ab - 2a - 2b + 6$, where the right hand side involves the usual addition and multiplication of rational numbers.

 (a) Prove that G is a group;
(b) What is the identity element?
(c) Calculate \((\frac{3}{2})^{-1}\) and \((-1)^{-1}\);
(d) What is \langle 4 \rangle?

Solution. For any \(a, b \in G, a \ast b - 2 = ab - 2a - 2b + 4 = (a - 2)(b - 2) \neq 0\) since \(a \neq 2\) and \(b \neq 2\), so that \(a \ast b \in G\). Furthermore, since \(a \ast 3 = 3a - 2a - 6 + 6 = a\) and \(3 \ast a = 3a - 6 - 2a + 6 = a\), \(3\) is the identity element in \(G\). It is straightforward to verify that \(a^{-1} = \frac{2a - 3}{a - 2} = 2 + \frac{1}{a - 2}\). Especially, \((\frac{3}{2})^{-1} = 4\) and \((-1)^{-1} = \frac{3}{2}\). It is easy to verify the associative law holds. Therefore \(G\) is a group. Finally the subgroup generated by 4 is all the rational numbers of the form 2\((a - 1)\) with \(a \neq 2\).\(\square\)

10. Prove that in any group the orders of \(ab\) and of \(ba\) are equal.

Proof. Note that \(ab = b^{-1}(ba)b\). If \((ba)^n = e\), then \((ab)^n = (b^{-1}(ba)b)^n = b^{-1}(ba)^nb = e\). Conversely, if \((ab)^n = e\), then \((b^{-1}(ba)b)^n = b^{-1}(ba)^nb = e\), namely, \((ba)^n = e\).\(\square\)

11. Describe all groups \(G\) which contain no proper subgroup.

Solution. If any element of \(G\) is of order 1, then \(G = \{e\}\). We may assume that \(G \neq \{e\}\). Then there exists an element \(a \in G\) whose order is \(m, m > 1\). Then \(\langle a \rangle \neq \{e\}\), so that \(G = \langle a \rangle\) since \(G\) has no proper subgroup, i.e. \(G\) is a cyclic group. But a cyclic group has no proper group if and only if its order is prime. Consequently, \(G = \{e\}\) or \(G \cong \mathbb{Z}_q\) with \(q\) prime.\(\square\)

12. Prove that every subgroup of a cyclic group is cyclic.

Proof. Let \(G = \langle a \rangle\) be a cyclic group and \(H\) a subgroup of \(G\). Then either \(H = \{e\}\) or there exists a least positive integer \(m\) such that \(a^m \in H\). Clearly, \(\langle a^m \rangle \subset H\). Conversely, if \(a^k \in H\), then \(k = qm + r\) with \(q, r \in \mathbb{Z}\) and \(0 \geq r < m\) (division algorithm). Since \(a^r = a^k(a^{qm})^{-1} \in H\) then the minimality of \(m\) implies that \(r = 0\) and \(k = qm\). Hence \(H \subset \langle a^m \rangle\) and \(H = \langle a^m \rangle\) thereby.\(\square\)

13. Let \(G\) be a cyclic group of order \(n\), and let \(r\) be an integer dividing \(n\). Prove that \(G\) contains exactly one subgroup of order \(r\).

Proof. Let \(G = \langle a \rangle\) and \(n = rk\). Then \(a^k\) is of order \(r\) and hence \(\langle a^k \rangle\) is a subgroup of order \(r\). Suppose that \(H < G\) and \(|H| = r\). By the conclusion of Exercise 12, \(H = \langle a^m \rangle\) with \(a^m\) of order \(r\). But the order of \(a^m\) is \(\frac{n}{(m, n)}\), so \(\frac{n}{(m, n)} = r\), i.e. \(n = r(m, n)\). Hence \(k = (m, n)\) and \(k|m\), which implies that \(a^m \in \langle a^k \rangle\) and hence \(\langle a^m \rangle \subset \langle a^k \rangle\). But \(|\langle a^m \rangle| = |\langle a^k \rangle|\), we must have \(H = \langle a^k \rangle\).\(\square\)

14. Define \(T = \left\{ \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} : 0 \leq \theta \leq 2\pi \right\} \subset GL_2(\mathbb{R})\).
(a) Prove \(T\) is a commutative subgroup of \(GL_2(\mathbb{R})\);
(b) Is \(T\) a cyclic group?

No.
(c) Describe the geometric effect of applying an element of T to a column vector \[
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \in \mathbb{R}^2.
\]

Rotate the vector counterclockwise by θ.

15. Prove or disprove: Let G be a group with the property that every element has finite order. Then G is a finite group.

Proof. The statement is NOT true. Let $G = \bigcup_{n=1}^{\infty} U_n$. Then G is an infinite group while every element in G is of finite order. □

16. Describe lattice of all subgroups of S_3 and U_{20}.

Solution. (1) $S_3 = \{(1), (12), (13), (23), (123), (132)\}$. Subgroup of order 1: (1); subgroups of order 2: $\langle (12) \rangle, \langle (13) \rangle, \langle (23) \rangle$; subgroups of order 3: $\langle (123) \rangle$; subgroup of order 6: S_3. (2) $U_{20} = \{e^{i\frac{2\pi}{20}} | 0 \leq k \leq 19\}$ is a cyclic group of order 20. Subgroup of order 1: 1; subgroup of order 2: $\langle -1 \rangle$; subgroup of order 4: $\langle i \rangle$; subgroup of order 5: $\langle e^{i\frac{2\pi}{5}} \rangle$; subgroup of order 10: $e^{i\frac{\pi}{5}}$; subgroup of order 20: U_{20} itself. □

References