3.4 Basic Properties and Trigonometric Functions

- 1. On your calculator you can check that $\cos(64^{\circ}) = 0.4384$ and $\sin(64^{\circ}) = 0.8988$.
 - (a) Find four other angles ψ so that $\cos(\psi) = 0.4384$ and $\sin(\psi) = 0.8988$.
 - (b) Find an angle ψ , $500^{\circ} \le \psi \le 1000^{\circ}$, so that $\cos(\psi) = 0.4384$ and $\sin(\psi) = 0.8988$.
 - (c) How many angles ψ of measure between 270° and 460° will have $\cos(\psi) = 0.4384$?
 - (d) How many angles ψ of measure between 810° and 1000° will have $\cos(\psi) = 0.4384$?
- 2. On your calculator you can check that $\cos(2.2 \, rad) = -0.5885$ and $\sin(2.2 \, rad) = 0.8085$.
 - (a) Find four other angles ψ so that $\cos(\psi) = -0.5885$ and $\sin(\psi) = 0.8085$.
 - (b) Find an angle, $10 \le \psi \, rad \le 18$, so that $\cos(\psi) = -0.5885$ and $\sin(\psi) = 0.8085$.
 - (c) How many angles $3 \le \psi \, rad \le 10$ have $\cos(\psi) = -0.5885$?
 - (d) How many angles $6 \le \psi \, rad \le 7$ have $\cos(\psi) = -0.5885$?
- 3. (a) If $\cos(\theta) = \frac{24}{25}$, what are the two possible values of $\sin(\theta)$?
 - (b) If $\sin(\theta) = -0.8$ and θ is in the third quadrant of the xy plane, what is $\cos(\theta)$?
 - (c) If $\sin(\theta) = \frac{3}{7}$, what is $\sin(\frac{\pi}{2} \theta)$?
- 4. Start with the equation $\sin(\theta) = \cos(\theta)$.
 - (a) Use the unit circle interpretation of the circular functions to find the solutions of this equation; make sure to describe your reasoning.
 - (b) Use the tangent function to find the solutions of this equation; make sure to describe your reasoning.
 - (c) Use a graphing device to find the solutions of this equation; make sure to describe your reasoning.
- 5. Consider the function $y = \frac{1}{\sin(\theta)}$. Use a graphing device to study various qualitative features (e.g., where the function is zero, undefined, positive, negative). How does the situation change if we study instead $y = \frac{1}{\sin^2(\theta)}$?
- 6. (a) If $f(x) = \sin(x)$ and g(x) = 3x, what is f(g(x))? What is f(g(5))? What is g(f(5))?
 - (b) If $f(x) = \sin(x)$ and $g(x) = x^2 + 3x 5$, what is f(g(x))? What is f(g(1))? What is g(f(x))?
 - (c) If $f(x) = g(x) = \sin(x)$, what is f(g(x))? What is f(g(1))? Is $f(g(x)) = [\sin(x)]^2$?
- 7. Below are four different graphs. These are graphs of the functions: $y = x + \sin(x)$, $y = x \sin(x)$, $y = x^2 \sin(x)$, $y = \sin(\sin(x))$. Which function goes with each graph and why? You can use a graphical device to check yourself, but make sure you can give a reason for each choice.

8. These graphs represent periodic functions. Describe the period in each case.

- 9. For each situation described, which could possibly be described using a periodic function?
 - (a) The population of rabbits in a large wooded area as a function of time.
 - (b) As you pedal a bike, the height of your big toe above the ground as a function of time.
 - (c) As you pedal a bike, the distance you have traveled as a function of time.
 - (d) The score for the UW womens Bball team as a function of time elapsed during a game.
 - (e) Your height as a function of time.
 - (f) The cost of a vacant lot as a function of its size.
 - (g) Your weight during the course of a single day, as a function of time.

- (h) The average speed of traffic on I-5 at the ship canal bridge, as a function of time.
- (i) The average daily temperature in Port Angeles, WA as a function of the day of the year.
- (j) The salary of a UW math professor as a function of the number of years on the faculty.
- (k) Tuition at the UW as a function of time.
- 10.* Dave is replumbing his house and needs to carry a copper pipe around the corner of a hallway. As he cheerfully walks down the hall and rounds the corner, the pipe becomes stuck, as pictured. Assume Dave must always hold the pipe level; i.e. he can't tilt it up or down.

- (a) Find a formula for the function $\ell(\theta)$ which computes the length of the longest pipe that will fit with the pictured angle θ .
- (b) Describe how you could use the function in a. to find the LONGEST pipe Dave can carry around the corner.
- (c) Use a graphing device to approximate the longest pipe Dave can carry around the corner.
- 11. You will need a graphing device for this problem. Using a single set of axes, plot these three graphs: $y = x \sin(x)$, $y = 2x \sin(x)$, $y = \frac{1}{2}x \sin(x)$.
 - (a) Find the intersection points (nodes) where the three graphs simultaneously intersect.
 - (b) Describe the appearence of the graph of $y = cx \sin(x)$ for various values of c.
- 12. Using (3.4.4) and (3.4.5), verify that we have this trigonometric identity:

$$\cos(\theta) = \sin(\frac{\pi}{2} + \theta).$$

Use this identity to rewrite each function $y = \cos(3)$, $y = \cos(3x)$ and $y = \cos(3x + 1)$ as a function of x which involves the sine function.