COHOMOLOGY OF CONES

CHARLIE GODFREY

1. Summary

If \(X \subset \mathbb{P}^N \) is a smooth projective variety with dimension \(n \) and \(C(X) \) is the projective cone over \(X \), then if \(C(X) \) satisfies Poincare duality over \(\mathbb{Z} \) we must have \(H^k(X;\mathbb{Z}) \cong H^{k+2}(X;\mathbb{Z}) \) for all \(k \), and I think the multiplication by the class of a hyperplane gives the isomorphism. Similar statement for Poincare duality over \(\mathbb{Q} \), with \(\mathbb{Q} \)-coefficients. When \(X \) is a hypersurface of degree \(d > 1 \) this is impossible, as is shown by an explicit calculation of the cohomology of \(X \) (or at least all of its Betti numbers).

However, if \(d < N \), \(C(X) \) has terminal singularities and when \(N > 3 \) \(X \) is \(\mathbb{Q} \)-factorial. Not sure about analytically \(\mathbb{Q} \)-factorial but I would guess so (we are only dealing with one isolated singularity, and its a cone point...).

2. (Co)Homology of Cones

Let \(X \subset \mathbb{P}^N \) be a smooth projective variety and let \(C(X) \subset \mathbb{P}^{N+1} \) be the (projective) cone over \(X \). We begin with a basic observation:

Proposition 1. The projective cone \(C(X) \) is the Thom space of the geometric line bundle \(L \) on \(X \) associated to the invertible sheaf \(\mathcal{O}_X(1) \).

Remark. I am following “Fulton” conventions for moving between locally free sheaves and vector bundles. This means that \(\mathcal{O}_X(1) \) is the sheaf of local sections of \(L \). If this irritates you ... sorry. In particular, \(L \) has a global section.

Proof. Recall that the Thom space \(\text{Th}(L) \) can be constructed as follows: start with the \(\mathbb{P}^1 \)-bundle \(\mathbb{P}(\mathcal{O}_X(1) \oplus \mathcal{O}_X) \). It has 2 interesting global sections, \(\sigma_0, \sigma_\infty \) corresponding to the inclusions

\[
X \cong \mathbb{P}(\mathcal{O}_X) \subset \mathbb{P}(\mathcal{O}_X(1) \oplus \mathcal{O}_X) \text{ and } X \cong \mathbb{P}(\mathcal{O}_X(1)) \subset \mathbb{P}(\mathcal{O}_X(1) \oplus \mathcal{O}_X)
\]

The difference between these global sections is that the normal bundle of \(\sigma_0(X) \) can be identified with \(\mathcal{O}_X(1) \) while the normal bundle of \(\sigma_\infty(X) \) can be identified with \(\mathcal{O}_X(-1) \). We have

\[
\text{Th}(L) = \mathbb{P}(\mathcal{O}_X(1) \oplus \mathcal{O}_X)/\mathbb{P}(\mathcal{O}_X(1))
\]

(this may not be the most standard description, but see [Ati89]). To see that this is the cone, blow up the vertex \(p \in C(X) \) and observe that

- \(\text{Bl}_p C(X) \cong \mathbb{P}(\mathcal{O}_X(1) \oplus \mathcal{O}_X) \) and
- The exceptional divisor \(E \subset \text{Bl}_p C(X) \) over \(p \) is exactly \(\mathbb{P}(\mathcal{O}_X(1)) \).

This is just a projective version of the fact that the blowup of the affine cone \(C_{\text{aff}}(X) \) at the vertex \(p \subset C_{\text{aff}}(X) \) is the geometric line bundle \(L^v \) associated to \(\mathcal{O}_X(-1) \), with the exceptional divisor \(E \subset C_{\text{aff}}(X) \) corresponding to the zero-divisor \(X \subset L^v \).

\[\square\]

Date: 2018/05/03.
Remark. Alternatively, view points \(l \in X \) as lines \(l \subset \mathbb{A}^{N+1} \). Then a vector in \(L_i \) is a linear functional \(\lambda : l \to \mathbb{C} \). The graph of \(\lambda \) is a line \(\lambda(l) \subset \mathbb{A}^{N+2} \), which we can view as a point \(\lambda(l) \in \mathbb{P}^{N+1} \). Since omitting the last coordinate of \(\lambda(l) \) gives back the line \(l \), we see that in fact \(\lambda(l) \subset C(X) \), and so we have a map

\[
\varphi : L \to C(X)
\]

At this point one checks that it’s an isomorphism onto \(C(X) \setminus \{p\} \), and as \(\lambda \to \infty, \lambda(l) \to p \), so that \(\varphi \) extends to the one-point-compactification \(Th(L) \), yielding a homeomorphism \(Th(L) \simeq C(X) \).

Now let’s recall the classic

Theorem 1 (Thom isomorphism theorem). Let \(X \) be a reasonable space (say with the homotopy type of a CW complex) and let \(E \xrightarrow{\tau} X \) be an oriented real vector bundle. Then there is a class \(\tau(E) \in \check{H}^n(Th(E); \mathbb{Z}) \) generating \(\check{H}(Th(E); \mathbb{Z}) \) as a free \(H^*(X; \mathbb{Z}) \)-module of rank 1.

There is a parallel Thom isomorphism identifying \(H_i(X; \mathbb{Z}) \simeq \check{H}_{i+r}(Th(E); \mathbb{Z}) \).

Remark. The \(H^*(X; \mathbb{Z}) \)-module structure comes from the identifications \(H_i(X; \mathbb{Z}) \simeq \check{H}_{i+2}(C(X); \mathbb{Z}) \).

Applying this result, we obtain

Proposition 2. There is a class \(\tau(L) \in \check{H}^2(C(X); \mathbb{Z}) \) generating \(\check{H}^*(C(X); \mathbb{Z}) \) as a free \(H^*(X; \mathbb{Z}) \)-module of rank 1. Similarly, there are identifications \(H_i(X; \mathbb{Z}) \simeq \check{H}_{i+2}(C(X); \mathbb{Z}) \).

Remark. In the matter at hand, the tildes translate to:

\[
H^k(C(X); \mathbb{Z}) = \begin{cases}
\mathbb{Z} & \text{if } k = 0 \\
0 & \text{if } k = 1 \\
H^{k-2}(X; \mathbb{Z}) & \text{if } k > 1
\end{cases}
\]

Now: assuming \(X \) is smooth, we have a fundamental class \([X] \in H_{2n}(X; \mathbb{Z}) \) (here \(n \) is the complex dimension of \(X \)) and Poincare duality states that the cap product with the fundamental class

\[
H^k(X; \mathbb{Z}) \to H_{2n-k}(X; \mathbb{Z})
\]

sending \(\alpha \mapsto \alpha \cap [X] \)

is an isomorphism. We also have the universal coefficient formula, which provides exact sequences

\[
0 \to \text{Ext}^1(H_{k-1}(X; \mathbb{Z}), \mathbb{Z}) \to H^k(X; \mathbb{Z}) \to \text{Hom}(H_k(X; \mathbb{Z}), \mathbb{Z}) \to 0
\]

Of course, we can say much more about the general structure of \(H^*(X; \mathbb{Z}) \), using e.g. the hard Lefschetz theorem - more on that later.

Suppose for a minute that Poincare duality also holds on \(C(X) \). Which is to say, we have isomorphisms

\[
H^k(C(X); \mathbb{Z}) \simeq H_{2(n+1)-k}(C(X); \mathbb{Z})
\]

presumably given by capping with a fundamental class. Note that the obvious choice of fundamental class would be the image of \([X] \) under the isomorphism \(H_{2n}(X; \mathbb{Z}) \simeq H_{2(n+1)}(C(X); \mathbb{Z}) \).

This will place serious restrictions on the (co)homology of \(X \), since we must have

\[
H^k(X; \mathbb{Z}) \simeq H^{k+2}(C(X); \mathbb{Z}) \simeq H_{2(n+1)-k-2}(C(X); \mathbb{Z}) \simeq H_{2n-k-2}(X; \mathbb{Z})
\]

Now Poincare duality on \(X \) provides an isomorphism

\[
H_{2n-k-2}(X; \mathbb{Z}) \simeq H^{k+2}(X; \mathbb{Z})
\]
and in this way we see that $H^k(X; \mathbb{Z}) \simeq H^{k+2}(X; \mathbb{Z})$ for all k. Also, it should be noted that since $H^1(C(X); \mathbb{Z}) = 0$ we must have $H_{2(n+1)-1}(C(X); \mathbb{Z}) = 0$ and hence $H_2(C(X); \mathbb{Z}) = 0$, and so $H^1(X; \mathbb{Z}) = 0$. Since $H^0(X; \mathbb{Z}) = \mathbb{Z}$ we conclude that

$$H^k(X; \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } k \text{ is even} \\ 0 & \text{if } k \text{ is odd} \end{cases}$$

Remark. I am pretty sure that the isomorphism $H_{2n-k-2}(X; \mathbb{Z}) \simeq H^{k+2}(X; \mathbb{Z})$ obtained above coincides with multiplication by the Chern class $c_1(\mathcal{O}_X(1))$. Given $\alpha \in H^k(X; \mathbb{Z})$, we obtain $\alpha \sim \tau \in H^{k+2}(C(X); \mathbb{Z})$. From this we obtain $\alpha \sim \tau \cap [C(X)] \in H_2(C(X); \mathbb{Z})$ and ... see here’s where I really need to know the homology version of the Thom isomorphism. (Idea: this is the pullback of τ along the usual inclusion $X \subset C(X)$). Knowing this would put even further restrictions on X.

The basic example of this phenomenon is when $X \subset \mathbb{P}^n$ is a linear subspace, hence so is $C(X) \subset \mathbb{P}^{n+1}$. It’s a little difficult to think of other such examples.

I’d like to also observe that our conditions on $H^r(X; \mathbb{Z})$ are not sufficient to guarantee Poincare duality for $H^r(C(X); \mathbb{Z})$. To see this, let $X \subset \mathbb{P}^2$ be a conic. Assuming the remark, Poincare duality for $C(X)$ would imply that multiplication by $c_1(\mathcal{O}_X(1))$ gives an isomorphism $\mathbb{Z} \simeq H_0(X; \mathbb{Z}) \simeq H^2(X; \mathbb{Z}) \simeq \mathbb{Z}$ which is false (it acts as multiplication by 2). Note however that if we worked over \mathbb{Q} or a finite field k of characteristic not 2 (instead of \mathbb{Z}, multiplication by c_1 actually would give an isomorphism.

The reason one should expect some funny business at the prime 2 in this example is that $C(X)$ is isomorphic to the quotient of \mathbb{P}^2 by the involution (a.k.a. $\mathbb{Z}/2$-action

$$t : \mathbb{P}^2 \to \mathbb{P}^2 \text{ sending } [x, y, z] \mapsto [-x, -y, z]$$

Similar remarks hold for rational normal curves of degree d, Veronese embeddings of \mathbb{P}^n, etc.

2.1. The singularity class of a cone point. I recall a simplified form of the criteria in Lemma 3.1 of Singularities of the MMP:

Proposition 3. Let $X \subset \mathbb{P}^N$ be a smooth projective variety. Then the projective cone $C(X) \subset \mathbb{P}^{N+1}$

is \mathbb{Q}-Gorenstein if and only if $r \cdot c_1(\mathcal{O}_X(1)) = K_X$ for some $r \in \mathbb{Q}$, and in this situation $C(X)$ is

- terminal if and only if $r < -1$,
- canonical if and only if $r \leq -1$,
- klt if and only if $r < 0$ and
- lc if and only if $r \leq 0$.

More precisely, if we resolve the singularities of $C(X)$ by blowing up the vertex, the discrepancy of the exceptional divisor $E \subset \text{Bl}_0 C(X)$ is $-1 - r$.

Some relevant corollaries, in no particular order:

Example 1. Suppose X is a degree d hypersurface. Then $\omega_X \simeq \mathcal{O}_X(d - N - 1)$, and so we have

$$r \cdot c_1(\mathcal{O}_X(1)) = K_X \text{ with } r = d - N - 1$$

Hence we see that $C(X)$ is terminal when $d < N$, canonical when $d = N$ and lc when $d = N + 1$. When $d > N + 1$ it’s not even lc.

One can generalize this example to complete intersections.

Example 2. More generally, a cone over an anti-canonically embedded Fano varieity is always at least klt. A cone over a variety with trivial canonical (e.g. a Calabi-Yau variety) is always at least lc.
2.2. The link at a cone point. Looking into any of the standard proofs of Poincare duality one sees that a key property of a manifold \(M \) exploited at various stages is that for any point \(p \in M \),

\[
H^k(M, M \setminus \{p\}; \mathbb{Z}) \simeq \begin{cases}
\mathbb{Z} & \text{if } k = \dim M \\
0 & \text{otherwise}
\end{cases}
\]

This property is axiomatized as follows: let \(X \) be a reasonable topological space (e.g. a CW-complex).

Definition 1. \(X \) is a homology \(n \)-manifold if and only if for every point \(p \in X \),

\[
H^k(X, X \setminus \{p\}; \mathbb{Z}) \simeq \begin{cases}
\mathbb{Z} & \text{if } k = n \\
0 & \text{otherwise}
\end{cases}
\]

If \(Y \) is an \(n \)-dimensional complex variety, then it is generically smooth, so it could only be a homology \(2n \)-manifold. Furthermore if \(p \in Y \) is a point with a neighborhood \(U \subset X \) that deformation-retracts onto \(p \), then by excision \(H^k(Y, Y \setminus \{p\}; \mathbb{Z}) \simeq H^k(U, U \setminus \{p\}; \mathbb{Z}) \) and by the relative cohomology exact sequence \(H^k(U, U \setminus \{p\}; \mathbb{Z}) \simeq H^{k-1}(U \setminus \{p\}; \mathbb{Z}) \). If \(Y \) is an affine variety sitting in \(\mathbb{C}^N \) (always the case locally) and \(\mathcal{S}_e(p) \) is a sphere of radius \(e \) centered at \(p \), then for suitably small \(U \) and \(e \) one has \(U \setminus \{p\} \approx \mathcal{S}_e(p) \) where here \(\approx \) denotes homotopy equivalence. In this way we see that

\[
H^k(Y, Y \setminus \{p\}; \mathbb{Z}) \simeq H^{k-1}(\mathcal{S}_e(p); \mathbb{Z}) \text{ for all } k
\]

Definition 2. The space \(\mathcal{S}_e(p) \) is called the link of \(X \) at \(p \).

To justify the terminology “the” one shows that it is independent of \(e \) for sufficiently small \(e \) (up to homeomorphism, say).

Proposition 4. If \(X \subset \mathbb{P}^N \) is a smooth projective variety and \(\mathcal{C} \subset \mathbb{P}^{N+1} \) is the affine cone over \(X \), with vertex \(p \in C(X) \), then the link \(\mathcal{S}_e(p) \) is the \(S^1 \)-bundle (a.k.a. circle bundle) associated to the invertible sheaf \(\mathcal{O}_X(-1) \).

Proof. Let \(\pi : \text{Bl}_p C_a(X) \rightarrow C(X) \) be the blow-up of \(C_a(X) \) at \(p \). Recall that \(\text{Bl}_p C_a(X) \simeq L^\vee \), the geometric line bundle associated to \(\mathcal{O}_X(-1) \), with exceptional divisor \(E \simeq X \) corresponding to the 0-section. The preimage of a \(\epsilon \)-sphere \(\mathcal{S}_e(p) \subset C_a(X) \) at \(p \) is the \(\epsilon \)-sphere bundle of \(L^\vee \).

To relate the topology of \(\mathcal{S}_e(p) \) to that of \(X \), we can use the long exact sequence on homotopy groups

\[
\cdots \rightarrow \pi_i(S^1) \rightarrow \pi_i(\mathcal{S}_e(p)) \rightarrow \pi_i(X) \xrightarrow{\partial} \pi_{i-1}(S^1) \rightarrow \cdots
\]

Since \(\pi_i(S^1) = 0 \) for \(i > 1 \) and all the spaces are connected, this reduces to an exact sequence

\[
0 \rightarrow \pi_2(\mathcal{S}_e(p)) \rightarrow \pi_2(X) \rightarrow \mathbb{Z}
\]

\[
\rightarrow \pi_1(\mathcal{S}_e(p)) \rightarrow \pi_1(X) \rightarrow \pi_0(S^1) \rightarrow 0
\]

together with isomorphisms \(\pi_i(\mathcal{S}_e(p)) \simeq \pi_i(X) \) for \(i > 2 \). As for cohomology, we have a Gysin sequence of the form

\[
\cdots \rightarrow H^{k-2}(X; \mathbb{Z}) \xrightarrow{-c_1} H^k(X; \mathbb{Z}) \xrightarrow{\pi} H^k(\mathcal{S}_e(p); \mathbb{Z})
\]

\[
\rightarrow H^{k-1}(X; \mathbb{Z}) \rightarrow \cdots
\]

where \(c_1 \) is the first Chern class of \(\mathcal{O}_X(1) \) and \(\pi : \mathcal{S}_e(p) \rightarrow X \) is the projection.

Now let’s recall a variant of the hard Lefschetz theorem:
Theorem 2 (Lefschetz). Let \(X \) be a smooth projective variety of dimension \(n \) and let \(c_1 \) be its first Chern class. Then multiplication by \(c_1 \)

\[
H^k(X; \mathbb{Q}) \to H^{k+2}(X; \mathbb{Q})
\]

is injective for \(k < n \), and surjective for \(k > n \).

Remark. This is only true with \(\mathbb{Q} \) coefficients, as one can see by considering a rational normal curve of degree \(d > 1 \) (or more generally a Veronese embedding of degree \(d > 1 \)). However via the universal coefficient theorem one obtains a statement about integral cohomology (below the middle dimension the kernel of \(c_1 \) is torsion, above the middle dimension the cokernel is torsion).

Remark. It’s because of this theorem that the Hodge diamond is, well, a diamond.

Applying this theorem we see that after tensoring with \(\mathbb{Q} \), for \(k - 2 < n \) the Gysin sequence breaks up into short exact sequence

\[
0 \to H^{k-2}(X; \mathbb{Q}) \xrightarrow{c_1} H^k(X; \mathbb{Q}) \to H^k(S_c(p); \mathbb{Q}) \to 0
\]

Similarly for \(k - 2 > n \) we have short exact sequences

\[
0 \to H^{k-1}(S_c(p); \mathbb{Q}) \to H^{k-2}(X; \mathbb{Q}) \to H^k(X; \mathbb{Q}) \to 0
\]

Example 3. Let’s actually take a closer look at cone over a Veronese. Let \(X \subset \mathbb{P}^n \) be the image of \(\mathbb{P}^n \) under the \(d \)-th Veronese embedding, and let \(C(X) \) be the cone over \(X \), with vertex \(p \). Then \(\mathcal{O}_X(1) \cong \mathcal{O}_{\mathbb{P}^n}(d) \) and so \(c_1(\mathcal{O}_X(d)) = dh \), where \(h = c_1(\mathcal{O}_{\mathbb{P}^n}(1)) \). Hence the Gysin exact sequence looks like

\[
\cdots \to H^{k-2}(\mathbb{P}^n; \mathbb{Z}) \xrightarrow{-dh} H^k(\mathbb{P}^n; \mathbb{Z}) \xrightarrow{\pi^*} H^k(S_c(p); \mathbb{Z}) \xrightarrow{c_1} H^{k+2}(\mathbb{P}^n; \mathbb{Z}) \to \cdots
\]

Since \(H^k(\mathbb{P}^n; \mathbb{Z}) = \mathbb{Z} \) generated by \(h^k \) if \(k \) is even and 0 otherwise, and since multiplication by \(-dh \) is always injective, we see that \(H^k(S_c(p); \mathbb{Z}) = 0 \) for \(k \) odd and we obtain short exact sequences

\[
0 \to \mathbb{Z} \xrightarrow{-d} \mathbb{Z} \to H^k(S_c(p); \mathbb{Z}) \to 0
\]

for \(k \) even, showing that \(H^k(S_c(p); \mathbb{Z}) \cong \mathbb{Z}/d \) for even \(k \). This is not surprising since the description of \(C(X) \) as a quotient of \(\mathbb{P}^{n+1} \) by an action of \(\mu_d \) (if \(\zeta \in \mu_d \) is a primitive root, then it acts on \([x_0, \ldots, x_{n+1}] \) like

\[
\zeta \cdot [x_0, \ldots, x_{n+1}] = [\zeta x_0, \ldots, \zeta x_n, x_{n+1}] ;
\]

the fixed point \([0, \ldots, 0, 1] \) corresponds to the cone point) identifies \(S_c(p) \) with a lens space obtained as the quotient of a free action of \(\mu_d \) on \(S^{2n+1} \).

2.3. **Singular cohomology of hypersurfaces.** To see how the above discussion plays out in some specific cases it will be nice to know the singular cohomology of smooth hypersurfaces (and more generally complete intersections). I actually don’t know a reference for the ensuing calculations so I will just go for it.

Let \(X \subset \mathbb{P}^{n+1} \) be a smooth hypersurface and let \(i : X \to \mathbb{P}^{n+1} \) be the inclusion. Recall

Theorem 3 (Lefschetz). The restriction map \(i^* H^k(\mathbb{P}^{n+1}; \mathbb{Z}) \to H^k(X; \mathbb{Z}) \) is injective for \(k \leq n \) and an isomorphism for \(k < n \).

Knowledge of the cohomology of \(\mathbb{P}^{n+1} \) shows that for \(k < n \)

\[
H^k(X; \mathbb{Z}) \cong \begin{cases}
\mathbb{Z} & \text{if } k \text{ is odd} \\
0 & \text{otherwise}
\end{cases}
\]
For simplicity I will assume \(n \) is (the case where \(n \) is odd is slightly more complicated). In that case we have an injection \(\mathbb{Z} \to H^n(X; \mathbb{Z}) \). Poincare duality together with the universal coefficient theorem then shows that \(H^k(X; \mathbb{Z}) \) is torsion-free for all \(k \) and for \(k > n \),

\[
H^k(X; \mathbb{Z}) \simeq \begin{cases}
\mathbb{Z} & \text{if } k \text{ is odd} \\
0 & \text{otherwise}
\end{cases}
\]

The only thing left to do is compute the rank of \(H^n(X; \mathbb{Z}) \) (of course one might also want to know about the intersection form - maybe another day). The preceding discussion shows

\[
\chi(X) = \sum_k \text{rk} H^k(X; \mathbb{Z}) = n + \text{rk} H^n(X; \mathbb{Z})
\]

and so we just need to calculate \(\chi(X) \). For this we can use the formula

\[
\chi(X) = \int_X c_n(\tau_X)
\]

the integral of the top Chern class of the tangent bundle. To get going on this integral, note that there is a short exact sequence of vector bundles on \(X \)

\[
0 \to \tau_X \to i^* \tau_{\mathbb{P}^{n+1}} \to \mathcal{N}_{X|\mathbb{P}^{n+1}} \to 0
\]

and hence

\[
c(\tau_X) = \frac{i^* c(\tau_{\mathbb{P}^{n+1}})}{c(\mathcal{N}_{X|\mathbb{P}^{n+1}})}
\]

From the Euler exact sequence on \(\mathbb{P}^{n+1} \) we find that

\[
c(\tau_{\mathbb{P}^{n+1}} = c(\mathcal{O}_{\mathbb{P}^{n+1}(1)})^{n+2} = (1 + h)^{n+2}
\]

and since \(\mathcal{N}_{X|\mathbb{P}^{n+1}} \simeq \mathcal{O}_X(d) \) where \(d = \text{deg} X \), we compute

\[
c(\tau_X) = \frac{(1 + h)^{n+2}}{1 + dh}
\]

(where I am abusively dropping the \(i^* \) in \(i^* h \)). We need to expand this as a power series in \(h \):

\[
\frac{(1 + h)^{n+2}}{1 + dh} = \left(\sum_j (-1)^j d^j h^j \right) \cdot \left(\sum_k \binom{n + 2}{k} h^k \right)
\]

\[
= \sum_{j,k} (-1)^j \binom{n + 2}{k} h^{j+k}
\]

and now recall that the integral will only pick off the degree \(n \) term: so, we find

\[
\chi(X) = \sum_{j+k=n} (-1)^j \binom{n + 2}{k} \int_X h^n
\]

and since \(\int_X h^n = d \) this is just

\[
\sum_{j+k=n} (-1)^j \binom{n + 2}{k} = \sum_{k=0}^n (-1)^{n-k} d^{n-k+1} \binom{n + 2}{k}
\]

\[
= \frac{1}{d} \left((1 - d)^{n+2} + (n + 2)d - 1 \right)
\]

after a little bit of rearranging. Combining this with the formula \(\chi(X) = n + \text{rk} H^n(X; \mathbb{Z}) \) we obtain

\[
\text{rk} H^n(X; \mathbb{Z}) = \frac{1}{d} \left((d - 1)^{n+2} + (n + 2)d - 1 \right) - n
\]
If n is odd, the Chern class calculation is identical, but we have $\chi(X) = n + 1 - \text{rk}H^n(X; \mathbb{Z})$, and so

$$
\text{rk}H^n(X; \mathbb{Z}) = n + 1 - \frac{1}{d}((1 - d)^{n+2} + (n + 2)d - 1)
$$

as a reality check, note that when $n = 1$ we recover the classic formula for the genus g of a plane curve X in terms of its degree: for in that situation

$$
2g = \text{rk}H^1(X; \mathbb{Z}) = \frac{(d - 1)^3 + 1}{d} - 1
$$

so that $g = \frac{(d-1)(d-2)}{2}$. Lovely! Note also that all the formulas for the rank output 1 when $d = 1$ (so $X = \mathbb{P}^n$), as they must.

References