
RING HOMOMORPHISMS AND THE ISOMORPHISM THEOREMS

BIANCA VIRAY

When learning about groups it was helpful to understand how different groups relate to
each other. We would like to do so for rings, so we need some way of moving between
different rings.

Definition 1. Let R = (R,+R, ·R) and (S,+S, ·S) be rings. A set map φ : R→ S is a (ring)
homomorphism if

(1) φ(r1 +R r2) = φ(r1) +S φ(r2) for all r1, r2 ∈ R,
(2) φ(r1 ·R r2) = φ(r1) ·S φ(r2) for all r1, r2 ∈ R, and
(3) φ(1R) = 1S.

For simplicity, we will often write conditions (1) and (2) as φ(r1 + r2) = φ(r1) + φ(r2) and
φ(r1r2) = φ(r1)φ(r2) with the particular addition and multiplication implicit.

Remark 1. If φ : (R,+, ·) → (S,+, ·) is a ring homomorphism then φ : (R,+) → (S,+) is
a group homomorphism.

Example 1. If R is any ring and S ⊂ R is a subring, then the inclusion i : S ↪→ R is a ring
homomorphism.

Exercise 1. Prove that

ϕ : Q→ Mn(Q), ϕ(a) =


a 0 . . . 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a


is a ring homomorphism.

Exercise 2. Let F be a field and let a ∈ F . Prove that

ϕ : F [x]→ F, ϕ(f(x)) = f(a)

is a ring homomorphism.

Exercise 3. Let n ∈ Z be a positive integer. Prove that

ϕ : Z→ Z, ϕ(a) = na

is not a ring homomorphism.

Exercise 4. Let R be a ring and let I be an ideal. Prove that

ϕ : R→ R/I, ϕ(r) = r + I

is a ring homomorphism.

Exercise 5. Determine if the following maps are homomorphisms.
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(1) φ : M2(R)→ R, φ

((
a b
c d

))
= a

(2) φ : M2(R)→ R, φ(A) = Tr(A)
(3) φ : M2(R)→ R, φ(A) = det(A)

The three definining properties of a ring homomorphism imply other important properties.

Lemma 1. Let φ : R→ S be a ring homomorphism. Then

(1) φ(0R) = 0S,
(2) φ(−r) = −φ(r) for all r ∈ R,
(3) if r ∈ R× then φ(r) ∈ S× and φ(r−1) = φ(r)−1, and
(4) if R′ ⊂ R is a subring, then φ(R′) is a subring of S.

Proof. Statements (1) and (2) hold because of Remark 1. We will repeat the proofs here for
the sake of completeness.

Since 0R + 0R = 0R, φ(0R) +φ(0R) = φ(0R). Then since S is a ring, φ(0R) has an additive
inverse, which we may add to both sides. Thus we obtain

φ(0R) = φ(0R) + φ(0R) +−φ(0R) = φ(0R) +−φ(0R) = 0S,

as desired.
Let r ∈ R. Since r +−r = −r + r = 0R, we have

φ(r) + φ(−r) = φ(−r) + φ(r) = φ(0R) = 0S,

where the last equality comes from (1). Thus φ(−r) = −φ(r) as additive inverses are unique.
Now let r ∈ R×. Then there exists r−1 ∈ R such that r · r−1 = r−1 · r = 1R. Then since φ

is a ring homomorphism we have

φ(r) · φ(r−1) = φ(r−1)φ(r) = φ(1R) = 1S.

Thus φ(r) has a multiplicative inverse and it is φ(r−1).
Lastly, let R′ ⊂ R be a subring. To show that φ(R′) is a subring we must show that

1S ∈ φ(R′) and for all s1, s2 ∈ φ(R′), s1− s2 and s1s2 are also in φ(R′). Since s1, s2 ∈ φ(R′),
there exists r1, r2 ∈ R′ such that φ(r1) = s1 and φ(r2) = s2. Thus

s1 − s2 = φ(r1)− φ(r2) = φ(r1) + φ(−r2) = φ(r1 − r2), and s1s2 = φ(r1)φ(r2) = φ(r1r2).

Since R′ is a subring, r1 − r2 and r1r2 are contained in R′. Hence s1 − s2 and s1s2 are in
φ(R′). Furthermore, 1R ∈ R′ so 1S = φ(1R) ∈ φ(R′). Therefore, φ(R′) is a subring of S. �

Exercise 6. Let φ : R → S be a ring homomorphism. If r ∈ R is a zero divisor, is φ(r)
a zero divisor in S? If yes, then prove this statement. If no, give an example of a ring
homomorphism φ and a zero divisor r ∈ R such that φ(r) is not a zero divisor.

As in the case of groups, homomorphisms that are bijective are of particular importance.

Definition 2. Let R and S be rings and let φ : R → S be a set map. We say that φ is a
(ring) isomorphism if

(1) φ is a (ring) homomorphism and
(2) φ is a bijection on sets.

We say that two rings R1 and R2 are isomorphic if there exists an isomorphism between them.

Lemma 2. Let R and S be rings and let φ : R→ S be an isomorphism. Then:
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(1) φ−1 is an isomorphism,
(2) r ∈ R is a unit if and only if φ(r) is a unit of S,
(3) r ∈ R is a zero divisor if and only if φ(r) is a zero divisor of S,
(4) R is commutative if and only if S is commutative,
(5) R is an integral domain if and only if S is an integral domain, and
(6) R is a field if and only if S is a field.

Exercise 7. Prove Lemma 2.

Exercise 8. Prove that Z[x] and R[x] are not isomorphic.

1. Kernel, image, and the isomorphism theorems

A ring homomorphism ϕ : R→ S yields two important sets.

Definition 3. Let φ : R→ S be a ring homomorphism. The kernel of φ is

kerφ := {r ∈ R : φ(r) = 0} ⊂ R

and the image of φ is

imφ := {s ∈ S : s = φ(r) for some r ∈ R} ⊂ S.

Exercise 9. Let R and S be rings and let φ : R → S be a homomorphism. Prove that φ is
injective if and only if kerφ = {0}.

Theorem 3 (First isomorphism theorem). Let R and S be rings and let φ : R → S be a
homomorphism. Then:

(1) The kernel of φ is an ideal of R,
(2) The image of φ is a subring of S,
(3) The map

ϕ : R/ kerφ→ imφ ⊂ S, r + kerφ 7→ φ(r)

is a well-defined isomorphism.

Proof. The image of φ is a subring by Lemma 1. Let us prove that kerφ is an ideal. By
Lemma 1, φ(0) = 0 so 0 ∈ kerφ and hence the kernel is nonempty. Let a, b ∈ kerφ and let
r ∈ R. Then since φ is a homomorphism we have

φ(a+ b) = φ(a) + φ(b) = 0 + 0 = 0,

φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0,

φ(ar) = φ(a)φ(r) = 0 · φ(r) = 0.

Thus a+ b, ra, and ar are in kerφ and so kerφ is an ideal.
Consider the map ϕ. We first show that it is well-defined. Let r, r′ ∈ R be such that

r − r′ ∈ kerφ, i.e., such that r + kerφ = r′ + kerφ. Then

φ(r) = φ(r′ + (r − r′)) = φ(r′) + φ(r − r′) = φ(r′) + 0 = φ(r′),
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so ϕ is well defined. Let r1 + I, r2 + I ∈ R/I. Then since φ is a homomorphism we have:

ϕ(r1 + I + r2 + I) = ϕ(r1 + r2 + I) = φ(r1 + r2) = φ(r1) + φ(r2)

= ϕ(r1 + I) + ϕ(r2 + I)

ϕ((r1 + I)(r2 + I)) = ϕ(r1r2 + I) = φ(r1r2) = φ(r1)φ(r2)

= ϕ(r1 + I)ϕ(r2 + I)

ϕ(1 + I) = φ(1) = 1.

Therefore ϕ is a homomorphism.
Let us prove that ϕ is bijective. If r + kerφ ∈ kerϕ, then ϕ(r + I) = φ(r) = 0 and so

r ∈ kerφ or equivalently r + kerφ = kerφ. Thus kerϕ is trivial and so by Exercise 9, ϕ
is injective. Let s ∈ imφ. Then there exists an r ∈ R such that φ(r) = s or equivalently
that ϕ(r + kerφ) = s. Thus s ∈ imϕ and so ϕ is surjective. Hence ϕ is an isomorphism as
desired. �

Exercise 10. Compute the kernel of ϕ where ϕ is as in (1) Exercise 1, (2) Exercise 2, and
(3) Exercise 4.

Theorem 4 (Second isomorphism theorem). Let R be a ring, let S ⊂ R be a subring, and
let I be an ideal of R. Then:

(1) S + I := {s+ a : s ∈ S, a ∈ I} is a subring of R,
(2) S ∩ I is an ideal of S, and
(3) (S + I)/I is isomorphic to S/(S ∩ I).

Proof. (1): S is a subring and I is an ideal so 1 + 0 ∈ S + I. Let s1 + a1 and s2 + a2 be
elements of S + I. Then

(s1+a1)−(s2+a2) = (s1 − s2)︸ ︷︷ ︸
∈S

+ (a1 − a2)︸ ︷︷ ︸
∈I

and (s1+a1)(s2+a2) = s1s2︸︷︷︸
∈S

+ s1a2 + a1s2 + a1a2︸ ︷︷ ︸
∈I

.

Hence S + I is a subring of R.
(2): The intersection S ∩ I is nonempty since 0 is contained in I and S. Let a1, a2 ∈ S ∩ I

and let s ∈ S. Then a1+a2 ∈ S∩I since S and I are both closed under addition. Furthermore
sa1 and a1s are in S ∩ I since I is closed under multiplication from R ⊃ S and S is closed
under multiplication. Therefore S ∩ I is an ideal of S.

(3): Consider the map φ : S → (S+ I)/I which sends an element s to s+ I. This is a ring
homomorphism by definition of addition and multiplication in quotient rings. We claim that
it is surjective with kernel S ∩ I, which would complete the proof by the first isomorphism
theorem. Consider elements s ∈ S and a ∈ I. Then s + a + I = s + I since a ∈ I, so
s+ a+ I ∈ imφ and hence φ is surjective. Let s ∈ S be an element of kerφ. Then s+ I = I
which holds if and only if s ∈ I or equivalently if s ∈ S ∩ I. Thus kerφ = S ∩ I and we have
our desired result. �

Theorem 5 (Third isomorphism theorem). Let R be a ring and let J ⊂ I be ideals of R.
Then I/J is an ideal of R/J and

R/J

I/J
∼= R/I.
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Proof. Since I and J are ideals, they are nonempty and so I/J = {a + J : a ∈ I} is also
nonempty. Let a1, a2 ∈ I and let r ∈ R. By definition of addition and multiplication of
cosets, we have

(a1 + J) + (a2 + J) = (a1 + a2) + J,

(r + J)(a1 + J) = ra1 + J, and

(a1 + J)(r + J) = a1r + J.

Since I is an ideal, a1 + a2, ra1, and a1r are contained in I so I/J is an ideal of R/J .
Consider the map φ : R/J → R/I that sends r + J to r + I. We claim that this is a

well-defined surjective homomorphism with kernel equal to I/J . (See Exercise 11.) Then
(R/J)/(I/J) is isomorphic to R/I by the first isomorphism theorem. �

Exercise 11. We will use the notation from Theorem 5. Prove that the map φ : R/J →
R/I, r + J 7→ r + I is a well-defined surjective homomorphism with kernel equal to I/J .

Exercise 12. Prove that Q(
√
−5) is isomorphic to Q[x]/〈x2 − 2x+ 6〉.
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