MATH 581G: HOMEWORK ASSIGNMENT # 5

DUE MONDAY, DECEMBER 11

Complete the remaining 5 problems from HW 4 and the following.

- (1) Let K be a field and let v be a discrete valuation on K.
 - (a) Prove that v extends uniquely to the completion K_v .
 - (b) Let $\mathcal{O}_{K,v}$ be the valuation ring of K and let \mathcal{O}_v be the valuation ring of K_v . Let \mathfrak{p} be the maximal ideal of $\mathcal{O}_{K,v}$ and let \mathfrak{p}_v be the maximal ideal of \mathcal{O}_v . Prove that

$$\mathcal{O}_{K,v}/\mathfrak{p}^n\cong\mathcal{O}_v/\mathfrak{p}_v^n$$

for all non negative integers n.

- (2) Let K be a field and let v be a valuation on K. Prove that v extends uniquely to any purely inseparable extension L/K.
- (3) (a) Show that if p ≠ 2, then Q_p[×]/Q_p^{×2} ≅ (Z/2Z)² with representatives {1, p, a, ap}, where a ∈ Z_p[×] is such that a mod p ∉ F_p^{×2}.
 (b) Show that Q₂/Q₂[×] ≅ (Z/2Z)³ with representatives {1,3,5,7,2,6,10,14}.

UNIVERSITY OF WASHINGTON, DEPARTMENT OF MATHEMATICS, BOX 354350, SEATTLE, WA 98195, USA

E-mail address: bviray@math.washington.edu URL: http://math.washington.edu/~bviray