MATH 581G: HOMEWORK ASSIGNMENT # 3

DUE MONDAY, NOVEMBER 13

Problems 5.2 and 5.3 from Osserman's notes and the following:

- (1) Let \mathcal{O}_K be a Dedekind domain with field of fractions K. Let L and L' be finite separable extensions of K, and let \mathcal{O}_L and $\mathcal{O}_{L'}$ be the respective integral closures of \mathcal{O}_K in L and L'. Further, let M be a finite separable extension of L, and let \mathcal{O}_M be the integral closure of \mathcal{O}_L in M. Let \mathfrak{p} be a nonzero prime of \mathcal{O}_K , let \mathfrak{q} be a nonzero prime of \mathcal{O}_L lying over \mathfrak{p} , and let \mathfrak{l} be a nonzero prime of \mathcal{O}_M lying over \mathfrak{q} .
 - (a) Show that if \mathfrak{p} is totally split in \mathcal{O}_L and $\mathcal{O}_{L'}$, then it is also totally split in the composite extension LL'.
 - (b) Show that if \mathfrak{p} is totally ramified in \mathcal{O}_M then \mathfrak{p} is totally ramified in \mathcal{O}_L .
 - (c) Show that if p is totally ramified in \mathcal{O}_L and unramified in $\mathcal{O}_{L'}$, then $L \cap L' = K$.
- (2) Let \mathcal{O}_K be a Dedekind domain with field of fractions K. Let L be a finite separable extension of K. Show that, for every integral ideal $\mathfrak{a} \subset \mathcal{O}_L$, there exists a $\theta \in \mathcal{O}_L$ such that the conductor $\mathfrak{F}_{\theta} := \{x \in \mathcal{O}_L : x\mathcal{O}_L \subset \mathcal{O}_K[\theta]\}$ is prime to \mathfrak{a} and such that $L = K(\theta)$.
- (3) Let $f(x) \in \mathbb{Z}[x]$ be any nonconstant polynomial.
 - (a) Prove that f has a root mod p for infinitely many primes p. [Hint: Prove this first under the assumption that f(0) = 1 by considering prime divisors of f(n!). Reduce to this case by setting g(x) = f(xf(0))/f(0).]
 - (b) Let K be a number field. Prove that there are infinitely many primes \mathfrak{p} in \mathcal{O}_K such that $f(\mathfrak{p}|p) = 1$, where $(p) = \mathfrak{p} \cap \mathbb{Z}$.
 - (c) Prove that for $m \in \mathbb{Z}$ there are infinitely many primes $p \equiv 1 \mod m$. [Please dont quote Dirichlets theorem: you are being asked to prove this special case!]
 - (d) Prove that there are infinitely many primes $p \in \mathbb{Z}$ that split completely in \mathcal{O}_K . [Hint: apply (b) to the Galois closure of K.]
 - (e) Suppose that f(x) is irreducible. Prove that f splits into a product of linear factors over \mathbb{F}_p for infinitely many primes p.
- (4) Let L/K be an finite extension of number fields and let M be be a finite Galois extension of K containing L. Let $G := \operatorname{Gal}(M/K)$ and let $H := \operatorname{Gal}(M/L)$.
 - (a) Let $\mathfrak{p} \subset \mathcal{O}_K$ be a nonzero prime, let $\mathfrak{q} \subset \mathcal{O}_L$ be a prime lying over \mathfrak{p} , and let $\mathfrak{l} \subset \mathcal{O}_M$ be a prime lying over \mathfrak{q} . Show that $e_{\mathfrak{q}/\mathfrak{p}} = [I_{\mathfrak{l}} : H \cap I_{\mathfrak{l}}]$ and that $f_{\mathfrak{q}/\mathfrak{p}}e_{\mathfrak{q}/\mathfrak{p}} = [D_{\mathfrak{l}} : H \cap D_{\mathfrak{l}}]$, where $D_{\mathfrak{l}}$ and $I_{\mathfrak{l}}$ denote the decomposition and inertia groups for $\mathfrak{l}/\mathfrak{p}$.
 - (b) Let $\mathfrak{p} \subset \mathcal{O}_K$ be a nonzero prime and let $\mathfrak{q}_1, \ldots, \mathfrak{q}_r$ be the set of primes of \mathcal{O}_L lying over \mathfrak{p} . Prove that $f_{\mathfrak{q}_i/\mathfrak{p}} = f_{\mathfrak{q}_j/\mathfrak{p}}$ for all i, j if and only if $\#(H \cap D_{\mathfrak{l}}) = \#(H \cap D_{\sigma(\mathfrak{l})})$ for some \mathfrak{l} lying above \mathfrak{p} and all $\sigma \in \operatorname{Gal}(M/K)$. Similarly prove that $e_{\mathfrak{q}_i/\mathfrak{p}} = e_{\mathfrak{q}_j/\mathfrak{p}}$ for all i, j if and only if $\#(H \cap I_{\mathfrak{l}}) = \#(H \cap I_{\sigma(\mathfrak{l})})$ for some \mathfrak{l} lying above \mathfrak{p} and all $\sigma \in \operatorname{Gal}(M/K)$.

- (c) Chebotarev's density theorem implies that for every $\sigma \in G$, there exist infinitely many primes $\mathfrak{l} \subset \mathcal{O}_M$ such that $\sigma = \operatorname{Frob}_{\mathfrak{l}}$. Use this together with parts (a) and (b) to prove that if $f_{\mathfrak{q}/\mathfrak{p}} = f_{\mathfrak{q}'/\mathfrak{p}}$ and $e_{\mathfrak{q}/\mathfrak{p}} = e_{\mathfrak{q}'/\mathfrak{p}}$ for all primes \mathfrak{p} of \mathcal{O}_K and all primes \mathfrak{q} and \mathfrak{q}' of \mathcal{O}_L lying over \mathfrak{p} , then L/K is Galois.
- (5) Compute the class group of $\mathbb{Q}(\zeta_{11})$. (You will need to use the Minkowski bound as well as information about cyclotomic fields. You should not just plug this in to some computer algebra software!)
- (6) Prove that a subset L of \mathbb{R}^n is a lattice if and only if it is a discrete subgroup of of \mathbb{R}^n .

University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195, USA

E-mail address: bviray@math.washington.edu *URL*: http://math.washington.edu/~bviray