MATH 581G: HOMEWORK ASSIGNMENT # 2

DUE MONDAY, OCTOBER 30

Problems 2.3, 2.4, 2.5, 2.8, 3.1 from Osserman's notes and the following.

(1) Prove the following Proposition.

Proposition 0.1. Let R be a Dedekind domain and $S \subset R$ be a multiplicative subset. Then $S^{-1}R$ is a Dedekind domain and the map

$$\mathfrak{a} \mapsto S^{-1}\mathfrak{a}$$

gives a surjective homomorphism from the group of fractional ideals of R to the group of fractional ideals of $S^{-1}R$. The kernel of this homomorphism is generated by the integral ideals of R that meet S.

- (2) Stickelberger's criterion. Let K/\mathbb{Q} be a number field with $[K : \mathbb{Q}] = n$. Fix algebraic integers $\alpha_1, \ldots, \alpha_n$ and let $\operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}}) = \{\sigma_1, \ldots, \sigma_n\}$. The determinant $\det([\sigma_i(\alpha_j)]_{i,j})$ is a sum of n! terms, one for each permutation of $\{1, \ldots, n\}$. Let P denote the sum of terms corresponding to the even permutations and N denote the sum of terms corresponding to the odd permutations. Show that P + N and PN are integers, and that $\operatorname{disc}_{K/\mathbb{Q}}(\alpha_1, \ldots, \alpha_n) = (P + N)^2 - 4PN$. Conclude that $\operatorname{disc}_{K/\mathbb{Q}}(\alpha_1, \ldots, \alpha_n)$ is 0 or 1 modulo 4.
- (3) Let $\mathfrak{a} \neq 0$ be an ideal in a Dedekind domain \mathcal{O} .
 - (a) Prove that \mathcal{O}/\mathfrak{a} is a principal ideal domain.
 - (b) Prove that \mathfrak{a} can be generated by two elements.

UNIVERSITY OF WASHINGTON, DEPARTMENT OF MATHEMATICS, BOX 354350, SEATTLE, WA 98195, USA

E-mail address: bviray@math.washington.edu *URL*: http://math.washington.edu/~bviray