MATH 581G: HOMEWORK ASSIGNMENT # 1

DUE MONDAY, OCTOBER 9

Problems 1.1, 1.4, 1.5, 1.6, 1.7 from Osserman's notes and the following.

(1) Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$. The goal of this problem is to prove that $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha \in K$.

Let $\alpha \in K$, let f(x) be the monic minimal polynomial of α . For any $g(x) \in \mathbb{Z}[x]$, let $\overline{g}(x)$ be the image of g in $\mathbb{Z}/3[x]$ under the natural map.

- (a) Show that $g(\alpha)$ is divisible by 3 in $\mathbb{Z}[\alpha]$ if and only if \overline{g} is divisible by \overline{f} in $\mathbb{Z}/3[x]$.
- (b) Consider the algebraic integers

$$\alpha_{ij} = (1 - (-1)^i \sqrt{7})(1 - (-1)^j \sqrt{10}).$$

Assume that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Show that the product of any two distinct α_{ij} is divisible by 3 in $\mathbb{Z}[\alpha]$, but that 3 does not divide any power of a single α_{ij} .

- (c) Assume that $\mathcal{O}_K = \mathbb{Z}[\alpha]$. Then $\alpha_{ij} = f_{ij}(\alpha)$ for some $f_{ij} \in \mathbb{Z}[x]$. Show that \overline{f} divides the product of any two distinct \overline{f}_{ij} but does not divide any power of a single \overline{f}_{ij} . Conclude that for all (i, j), (k, l) with $(i, j) \neq (k, l)$, there is an irreducible factor that divides \overline{f} and \overline{f}_{ij} , but not \overline{f}_{kl} .
- (d) Conclude that \overline{f} has at least four distinct irreducible factors over $\mathbb{Z}/3[x]$ and show that this results in a contradiction.
- (2) Let $K = \mathbb{Q}(\alpha)$ be a number field of degree n. Let f(x) be the monic minimal polynomial of α and let $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_n$ be the conjugates of α . Prove that

disc
$$(1, \alpha, \dots, \alpha^{n-1}) = (-1)^{\frac{n(n-1)}{2}} \operatorname{Norm}_{K/\mathbb{Q}}(f'(\alpha)).$$

Apply this to $\alpha = \zeta_p = e^{\frac{2\pi i}{p}}$ for a prime p to show that

disc
$$(1, \zeta_p, \dots, \zeta_p^{p-2}) = (-1)^{(p-1)(p-2)/2} p^{p-2}.$$

- (3) Let K be a number field of degree n over \mathbb{Q} . Show that $\alpha_1, \ldots, \alpha_n$ is an integral basis if and only if $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) = \operatorname{disc}(\mathcal{O}_K)$. Prove that if $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_K$ and $\operatorname{disc}(\alpha_1, \ldots, \alpha_n)$ is squarefree, then $\alpha_1, \ldots, \alpha_n$ form an integral basis for \mathcal{O}_K .
- (4) Let $f(x) = x^3 + ax + b$ with $a, b \in \mathbb{Z}$ and assume that f(x) is irreducible over \mathbb{Z} . Let $\alpha \in \overline{\mathbb{Q}}$ be a root of f(x).
 - (a) Show that $f'(\alpha) = -(2a\alpha + 3b)/\alpha$. Show that $2a\alpha + 3b$ is a root of

$$\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b.$$

Compute Norm_{$\mathbb{Q}(\alpha)/\mathbb{Q}$} $(2a\alpha + 3b)$.

- (b) Show that $disc(1, \alpha, \alpha^2) = -(4a^3 + 27b^2)$.
- (c) Suppose that $\alpha^3 = \alpha + 1$ or that $\alpha^3 + \alpha = 1$. Prove that $\{1, \alpha, \alpha^2\}$ is an integral basis for $\mathcal{O}_{\mathbb{Q}(\alpha)}$.
- (5) Let $K = \mathbb{Q}(\sqrt{m}, \sqrt{n})$. Then K contains $\mathbb{Q}(\sqrt{mn})$.

- (a) For $\alpha \in K$ show that α is integral if and only if $N_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ and $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{m})}$ are algebraic integers.
- (b) Suppose that $m \equiv 3 \pmod{4}$ and that $n \equiv 2 \pmod{4}$. Show that every $\alpha \in \mathcal{O}_K$ has the form

$$\frac{a+b\sqrt{m}+c\sqrt{n}+d\sqrt{mn/\gcd(m,n)^2}}{2},$$

for some $a, b, c, d \in \mathbb{Z}$.

(c) Continuing from (b), show that a and b must be even and that $c \equiv d \pmod{2}$ by considering $\operatorname{Norm}_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$. Conclude that

$$\left\{1,\sqrt{m},\sqrt{n},\frac{1}{2}\left(\sqrt{n}+\sqrt{mn/\gcd(m,n)^2}\right)\right\}$$

is an integral basis for \mathcal{O}_K .

(d) Show that $\operatorname{disc}(\mathcal{O}_K) = 64(mn)^2/\operatorname{gcd}(m,n)^2$.

University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195, USA

E-mail address: bviray@math.washington.edu *URL*: http://math.washington.edu/~bviray