As I mentioned in class, there are two main applications of the Fundamental Theorem of Finite Abelian Groups and its proof:

- Enumerating all abelian groups of order n for a fixed n, and
- Determining whether two abelian groups of order n are isomorphic.

I solve two types of these problems to demonstrate the technique. I suggest that you first attempt to solve these problems on your own, and then (and only then) look at the solution.

Enumerating all abelian groups of order n

Problem. Give a complete list of all abelian groups of order 144, no two of which are isomorphic.

Note that $144 = 2^4 \cdot 3^2$. By the Fundamental Theorem of Finite Abelian Groups, every abelian group of order 144 is isomorphic to the direct product of an abelian group of order $16 = 2^4$ and an abelian group of order $9 = 3^2$. Furthermore, abelian groups of order $16 = 2^4$, up to isomorphism, are in bijection with partitions of 4, and abelian groups of order $9 = 3^2$ are in bijection with partitions of 2. Thus, there are $5 \cdot 2 = 10$ abelian groups of order 144 and they are

$$\begin{split} \mathbb{Z}_9 \times \mathbb{Z}_{16} & \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{16} \\ \mathbb{Z}_9 \times \mathbb{Z}_8 \times \mathbb{Z}_2 & \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_8 \times \mathbb{Z}_2 \\ \mathbb{Z}_9 \times \mathbb{Z}_4 \times \mathbb{Z}_4 & \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_4 \\ \mathbb{Z}_9 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_9 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \end{split}$$

Enumerating all abelian groups of order n

Problem. Are $A := \mathbb{Z}_{30} \times \mathbb{Z}_{20} \times \mathbb{Z}_4$ and $B := \mathbb{Z}_{15} \times \mathbb{Z}_{10} \times \mathbb{Z}_{16}$ isomorphic? We first prove the following lemmas (which are also in the book).

Lemma 0.1. Let m_1, m_2, \ldots, m_r be relatively prime positive integers. Then

$$\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r} \cong \mathbb{Z}_{m_1 m_2 \cdots m_r}.$$

Proof. The element $(1, 1, \ldots, 1) \in \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r}$ has order $\operatorname{lcm}(m_1, m_2, \ldots, m_r) = m_1 m_2 \cdots m_r$, which is the order of the group. Therefore, $\mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \times \cdots \times \mathbb{Z}_{m_r}$ is cyclic and so is isomorphic to $\mathbb{Z}_{m_1 m_2 \cdots m_r}$.

Lemma 0.2. Let $G_1, G'_1, G_2, G'_2, \ldots, G_r, G'_r$ be groups such that for all $i, G_i \cong G'_i$. Then

$$G_1 \times G_2 \times \cdots \times G_r \cong G'_1 \times G'_2 \times \cdots \times G'_r.$$

AUTUMN 2016: MATH 402BCLASSIFICATION OF GROUPS UP TO ISOMORPHISMProof. Let $\phi_i: G_i \to G'_i$ be an isomorphism. Then one can check that the map $\phi \colon G_1 \times G_2 \times \dots \times G_r \to G'_1 \times G'_2 \times \dots \times G'_r, \quad \phi \left((g_1, g_2, \dots, g_r) \right) = \left(\phi_1(g_1), \phi_2(g_2), \dots, \phi_r(g_r) \right)$ is an isomorphism.

Now let us complete the problem. By Lemma 0.1, we have

$$\mathbb{Z}_{30} \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5$$
, and $\mathbb{Z}_{20} \cong \mathbb{Z}_4 \times \mathbb{Z}_5$.

Therefore, by Lemma 0.2 (and some rearranging), we have

$$A \cong (\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_4) \times (\mathbb{Z}_3) \times (\mathbb{Z}_5 \times \mathbb{Z}_5).$$
(1)

Similarly,

$$\mathbb{Z}_{15} \cong \mathbb{Z}_3 \times \mathbb{Z}_5$$
 and $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5$,

 \mathbf{SO}

$$B \cong (\mathbb{Z}_2 \times \mathbb{Z}_{16}) \times (\mathbb{Z}_3) \times (\mathbb{Z}_5 \times \mathbb{Z}_5).$$
⁽²⁾

By the Fundamental Theorem of Finite Abelian Groups, there is a *unique* representation of any finite abelian group as a product of cyclic groups of prime power order. Since the cyclic groups of prime power order that appear in (1) and (2) are not the same, A is not isomorphic to B.