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Abstract. Given any global field k of characteristic 2, we construct a Châtelet surface over
k that fails to satisfy the Hasse principle. This failure is due to a Brauer-Manin obstruction.
This construction extends a result of Poonen to characteristic 2, thereby showing that the
étale-Brauer obstruction is insufficient to explain all failures of the Hasse principle over a
global field of any characteristic.

1. Introduction

Poonen recently showed that, for a global field k of characteristic different from 2, the
étale-Brauer obstruction is insufficient to explain failures of the Hasse principle [6]. This
result relied on the existence of a Châtelet surface over k that violates the Hasse principle [5,
Prop 5.1 and §11]. Poonen’s construction fails in characteristic 2 due to the inseparability
of y2 − az2.

Classically, Châtelet surfaces have only been studied over fields of characteristic different
from 2. In this paper, we define Châtelet surfaces over fields of characteristic 2 and obtain
a result analogous to [5, Prop 5.1].

Theorem 1.1. Let k be any global field of characteristic 2. There exists a Châtelet surface
X over k that violates the Hasse principle.

The only assumption on characteristic in [6] is in using [5, Prop 5.1] (all other arguments
go through exactly as stated after replacing any polynomial of the form by2 + az2 by its
Artin-Schreier analogue, by2 + byz + az2). Therefore, Theorem 1.1 extends the main result
of [6] to global fields of characteristic 2, thereby showing that the étale-Brauer obstruction is
insufficient to explain all failures of the Hasse principle over a global field of any characteristic.

The proof of Theorem 1.1 is constructive. The difficulty in the proof lies in finding suitable
equations so that the Brauer set is easy to compute and empty.

2. Background

2.1. Brauer-Manin obstructions. The counterexamples to the Hasse principle referred to
in Theorem 1.1 are all explained by the Brauer-Manin obstruction, which we recall here [1,
Thm. 1]. Let k be a global field and let Ak be the adèle ring of k. Recall that for a projective
variety X, we have the equality X(Ak) =

∏
vX(kv), where v runs over all nontrivial places

of k. The Brauer group of X, denoted BrX, is the group of equivalence classes of Azumaya
algebras on X. Let invv denote the morphism from class field theory BrQv → Q/Z [7,
XIII.3, Prop. 6]. For any A ∈ BrX, P ∈ X(S), let evA(P ) be the image of A under the
map P ∗ : BrX → BrS, which is induced by P : S → X. Define
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X(Ak)Br :=

{
(Pv)v ∈ X(Ak) :

∑
v

invv (evA(Pv)) = 0 for all A ∈ BrX

}
By class field theory we have

X(k) ⊆ X(Ak)Br ⊆ X(Ak).

Thus, if X(Ak)Br = ∅, then X has no k-points. We say there is a Brauer-Manin obstruction
to the Hasse principle if X(Ak) 6= ∅ but X(Ak)Br = ∅. See [8, §5.2] for more details.

2.2. Châtelet surfaces in characteristic 2. A conic bundle X over P1 is the zero-locus
of a nowhere-vanishing global section s of Sym2(E) in PE , for some rank 3 vector sheaf E on
P1. Consider the special case where E = O⊕O ⊕O(2) and s = s1 − s2 where s1 is a global
section of Sym2(O⊕O) and s2 is a global section of O(2)⊗2 = O(4). Take a ∈ k× and P (x)
a separable polynomial over k of degree 3 or 4. If s1 = y2 + yz + az2 and s2 = w4P (x/w),
then X contains the affine variety defined by y2 + yz + az2 = P (x) as an open subset. In
this case we say X is the Châtelet surface defined by

y2 + yz + az2 = P (x).

By the same basic argument used in [5, Lemma 3.1], we can show that X is smooth. See [5,
§3 and §5] for the construction of a Châtelet surface in the case where the characteristic is
different from 2.

3. Proof of Theorem 1.1

Let k denote a global field of characteristic 2. Let F denote its constant field and let n
denote the order of F×. Fix a prime p of k of odd degree (recall that the degree of a prime p
is the degree of the field extension Op/p over F), and let S = {p}. Let Ok,S denote the ring
of S-integers. Let γ ∈ F be such that T 2 + T + γ is irreducible in F[T ]. By the Chebotarev
density theorem [4, Thm 13.4, p. 545] applied to the compositum of k[T ]/(T 2 + T + γ)
and the Hilbert class field of k, we can find an element b ∈ Ok,S that generates a prime of
odd degree. Similarly, by applying the Chebotarev density theorem to the compositum of
k[T ]/(T 2 +T +γ) and the ray class field of modulus b2, we can find an element a ∈ Ok,S that
generates a prime of even degree and that is congruent to γ (mod b2Ok,S). These conditions
imply that vp(a) is even and negative and that vp(b) is odd and negative.

Define

f(x) = a−4nbx2 + x+ ab−1,

g(x) = a−8nb2x2 + a−4nbx+ a1−4n + γ.

Note that g(x) = a−4nbf(x) + γ. Let X be the Châtelet surface given by

y2 + yz + γz2 = f(x)g(x). (∗)

In Lemma 3.1 we show X(Ak) 6= ∅, and in Lemma 3.3 we show X(Ak)Br = ∅. Together,
these show that X has a Brauer-Manin obstruction to the Hasse principle.

Lemma 3.1. The Châtelet surface X has a kv-point for every place v.
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Proof. Suppose that v = va. Since a generates a prime of even degree, the left-hand side
of (∗) factors into two distinct linear factors in kv[y, z]. Therefore, we can change variables
so that (∗) becomes w1w2 = f(x)g(x) and hence there is a solution over kv.

Now suppose that v 6= va. Since y2 + yz+ γz2 is a norm form for an unramified extension
of kv for all v, in order to prove the existence of a kv-point, it suffices to find an x ∈ kv such
that the valuation of the right-hand side of (∗) is even.

Suppose further that v 6= vp, vb. Choose x such that v(x) = −1. Then the right-hand side
of (∗) has valuation −4 so there exists a kv-point.

Suppose that v = vp. Let π be a uniformizer for v and take x = πa2/b. Then

f(x) = b−1a4−4nπ2 + a2b−1π + ab−1.

Since a has negative even valuation and n ≥ 1, we have v(f(x)) = v(a2b−1π) which is even.
Now let us consider

g(x) = a4−8nπ2 + a2−4nπ + a1−4n + γ.

By the same conditions mentioned above, all terms except for γ have positive valuation.
Therefore v(g(x)) = 0.

Finally suppose that v = vb. Take x = 1
b

+ 1. Then

f(x) =
1

b

(
a−4n + a+ 1 + b+ a−4nb2

)
.

Note that by the conditions imposed on a, (a−4n + a+ 1 + b+ a−4nb2) ≡ γ+b (mod b2Ok,S).
Thus v(f(x)) = −1. Now consider

g(x) = a−8n + a−8nb2 + a−4n + a−4nb+ a1−4n + γ

modulo b2Ok,S. By the conditions imposed on a, we have

g(x) ≡ 1 + 1 + b+ γ + γ ≡ b (mod b2Ok,S).

Thus v(g(x)) = 1, so v (f(x)g(x)) is even. �

Let L = k[T ]/(T 2 + T + γ) and let A denote the class of the cyclic algebra (L/k, f(x))2
in Br k(X)(see [2, §2.5] for a detailed definition). Using the defining equation of the surface,
we can show that (L/k, g(x))2 is also a representative for A. Since g(x) + a−4nbf(x) is a
v-adic unit, g(x) and f(x) have no common zeroes. Since A is the class of a cyclic algebra of
order 2, the algebra (L/k, f(x)/x2)2 is another representative for A. Note that for any point
P of X, there exists an open neighborhood U containing P such that either f(x), g(x), or
f(x)/x2 is a nowhere vanishing regular function on U . Therefore, A is an element of BrX.

To show that X(Ak)Br = ∅, we use the continuity of the map evA. While the result is
well-known, it is difficult to find in the literature so we give a proof for reader’s convenience.

Lemma 3.2. Let kv be a local field and let V be a smooth projective scheme over kv. For
any [B] ∈ BrV ,

evB : V (kv)→ Br kv

is locally constant.

Proof. To prove continuity, it suffices to show that ev−1B (B′) is open for any B′ in the image
of evB. By replacing [B] with [B]− [evB(x)], we reduce to showing that ev−1B (0) is open.
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Fix a representative B of the element [B] ∈ BrV . Let n2 denote the rank of B and let
fB : YB → V be the PGLn-torsor associated to B. Then we observe that the set ev−1B (0) is
equal to fB(YB(kv)) ⊂ V (kv). This set is open by the implicit function theorem [3, Thm.
2.2.1]. �

Lemma 3.3. Let Pv ∈ X(kv). Then

invv(evA(Pv)) =

{
1/2 if v = vb,

0 otherwise.

Therefore X(Ak)Br = ∅.

Proof. The surface X contains an open affine subset that can be identified with

V (y2 + yz + az2 − P (x)) ⊆ A3.

Let X0 denote this open subset. Since evA is continuous by Lemma 3.2 and invv is an
isomorphism onto its image, it suffices to prove that invv takes the desired value on the
v-adically dense subset X0(kv) ⊂ X(kv).

Since L/k is an unramified extension for all places v, evaluating the invariant map reduces
to computing the parity of the valuation of f(x) or g(x).

Suppose that v 6= va, vb, vp. If v(x0) < 0, then by the strong triangle inequality, v(f(x0)) =
v(x20). Now suppose that v(x0) ≥ 0. Then both f(x0) and g(x0) are v-adic integers, but
since g(x)− a−4nbf(x) = γ either f(x0) or g(x0) is a v-adic unit. Thus, for all Pv ∈ X0(kv),
invv(A(Pv)) = 0.

Suppose that v = va. Since a generates a prime of even degree, T 2 + T + γ splits in ka.
Therefore, (L/k, h) is trivial for any h ∈ ka(V )× and so invv(A(Pv)) = 0 for all Pv ∈ X0(kv).

Suppose that v = vp. We will use the representative (L/k, g(x)) of A. If v(x0) < v(a4nb−1)
then the quadratic term of g(x0) has even valuation and dominates the other terms. If
v(x0) > v(a4nb−1) then the constant term of g(x0) has even valuation and dominates the
other terms. Now assume that x0 = a4nb−1u, where u is a v-adic unit. Then we have

g(x0) = u2 + u+ γ + a1−4n.

Since γ was chosen such that T 2 +T +γ is irreducible in F[T ] and p is a prime of odd degree,
T 2 + T + γ is irreducible in Fp[T ]. Thus, for any v-adic unit u, u2 + u + γ 6≡ 0 (mod p).
Since a1−4n ≡ 0 mod p, this shows g(x0) is a v-adic unit. Hence invv(A(Pv)) = 0 for all
Pv ∈ X0(kv).

Finally suppose that v = vb. We will use the representative (L/k, f(x)) ofA. If v(x0) < −1
then the quadratic term has odd valuation and dominates the other terms in f(x0). If
v(x0) > −1 then the constant term has odd valuation and dominates the other terms in
f(x0). Now assume x0 = b−1u where u is any v-adic unit. Then we have

f(x0) =
1

b

(
a−4nu2 + u+ a

)
.

It suffices to show that a−4nu2 + u+ a 6≡ 0 (mod bOk,S). Since a ≡ γ (mod bOk,S), we have

a−4nu2 + u+ a ≡ u2 + u+ γ.

Using the same argument as in the previous case, we see that a−4nu2+u+a 6≡ 0 (mod bOk,s)
and thus v(g(x0)) = −1. Therefore invv(A(Pv)) = 1

2
for all Pv ∈ X0(kv). �
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