Statistics of Modular Symbol

William Stein1

University of Washington

\texttt{wstein@uw.edu}

April 7, 2015

1Joint work-in-progress with Barry Mazur and Karl Rubin.
Overview

Modular symbols and L-functions

Statistics of modular symbols

Not-so-random walks: sums of modular symbols
Modular symbols associated to an elliptic curve

- **Elliptic curve**: E/\mathbb{Q}

- **Period mapping**: integration defines a map
 \[\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\} \to \mathbb{C}\] given by $\alpha \mapsto \int_{\alpha}^{\infty} 2\pi if(z)dz$.

- **Homology**: $H_1(E, \mathbb{Z}) \cong \Lambda_E \subset \mathbb{C}$ is the image of all integrals of closed paths in the upper half plane, and $E(\mathbb{C}) \cong \mathbb{C}/\Lambda_E$.

- **Complex conjugation**: $\Lambda_E^+ \oplus \Lambda_E^- \subset \Lambda_E$ has index 1 or 2. Write $\Lambda_E^+ = \mathbb{Z}\omega^+$, where $\omega^+ > 0$ is well defined.

- **Modular symbols**: $[\alpha]^+_E : \mathbb{P}^1(\mathbb{Q}) \to \mathbb{Q}$ defined by
 \[
 \frac{1}{2\omega^+} \left(\int_{\alpha}^{\infty} 2\pi if(z)dz + \int_{-\alpha}^{\infty} 2\pi if(z)dz \right) = [\alpha]^+_E \cdot \omega^+
 \]
 (similar for $[\alpha]^-_E$.)

- Explain on the blackboard how the integral above “works” for $\alpha = \infty$ using $f(z) = \sum a_n e^{2\pi inz}$.

We compute some modular symbols using Sage. Despite the numerical definitions above, the following computations are entirely algebraic.

```python
E = EllipticCurve('11a')
s = E.modular_symbol()
s(17/13)
```

-4/5

Let’s compute more symbols with denominator 13:

```python
[s(n/13) for n in [-13..13]]
```

[1/5, -4/5, 17/10, 17/10, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, 17/10, 17/10, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, 17/10, 17/10, -4/5, 1/5]

Lots of random-looking rational numbers... patterns...?

Symmetry: \([a/M]^+ = [-a/M]^+\) and \([1 + (a/M)]^+ = [a/M]\).
A motivation for considering modular symbols: \(L \)-functions

\[L(E, s) = \sum a_n n^{-s}, \text{ where } a_p = p + 1 - \#E(\mathbb{F}_p). \]

For each Dirichlet character \(\chi : (\mathbb{Z}/M\mathbb{Z})^* \to \mathbb{C}^* \) there is a twisted \(L \)-function \(L(E, \chi, s) = \sum \chi(n) a_n n^{-s} \). Moreover,

\[
\frac{L(E, \chi, 1)}{\omega_\chi} = \text{explicit sum involving } \left[\frac{a}{M} \right]_E^\pm \text{ and Gauss sums}
\]

(The details are not important for this talk...)

Thus statistical properties of the set of numbers

\[Z(M) = \left\{ \left[\frac{a}{M} \right]_E^+: a = 0, \ldots, M - 1 \right\} \]

are relevant to understanding special values of twists.
Frequency histogram: $M = 13$

```python
E = EllipticCurve('11a')
s = E.modular_symbol()
M = 13
print([s(a/M) for a in range(M)])
stats.TimeSeries([s(a/M) for a in range(M)]).plot_histogram()

[1/5, -4/5, 17/10, 17/10, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, 17/10, 17/10, -4/5]```
Frequency histogram: $M = 100$

```python
E = EllipticCurve('11a'); s = E.modular_symbol()
M = 100; v = [s(a/M) for a in range(M)]; print(v)
stats.TimeSeries(v).plot_histogram()
```

Output:

```
[1/5, 1/5, 6/5, 1/5, -3/10, -4/5, 6/5, 1/5, -3/10, 1/5, 1/5, -3/10, 1/5, 6/5, 17/10, 11/5, 27/10, 6/5, 1/5, 6/5, 27/10, 6/5, 27/10, -3/10, 7/10, 6/5, 1/5, -3/10, 27/10, 1/5, -23/10, -3/10, 1/5, -13/10, -4/5, -3/10, -23/10, 6/5, -23/10, -3/10, -13/10, -23/10, -19/5, -23/10, -3/10, -4/5, -13/10, -23/10, -3/10, -23/10, -19/5, -23/10, -3/10, -4/5, -13/10, -23/10, -3/10, -23/10, -19/5, -23/10, -13/10, -23/10, 6/5, -23/10, -3/10, -4/5, -13/10, -23/10, -3/10, -23/10, 1/5, -3/10, -23/10, 1/5, 27/10, -3/10, 1/5, 6/5, 7/10, -3/10, 27/10, 6/5, 27/10, 6/5, 1/5, 6/5, 27/10, 11/5, 17/10, 6/5, 1/5, -3/10, 1/5, 1/5, 1/5, -3/10, 1/5, 6/5, -4/5, -3/10, 1/5, 6/5, 1/5]
```
Frequency histogram: $M = 1000$

```python
E = EllipticCurve('11a')
s = E.modular_symbol()
M = 1000
stats.TimeSeries([s(a/M) for a in range(M)]).plot_histogram()
```
We quickly want much larger $M$ in order to see what might happen in the limit, and the code in Sage is way too slow for this...
More frequency histograms: need Cython...

```python
load modular_symbol_map.pyx

def ms(E, sign=1):
 g = E.modular_symbol(sign=sign)
 h = ModularSymbolMap(g)
 d = float(h.denom) # otherwise get int division!
 return lambda a,b: h._eval1(a,b)[0]/d

s = ms(EllipticCurve('11a'))
M = 100000 # the following takes about 1 second
stats.TimeSeries([s(a, M) for a in range(M)]).plot_histogram()
```
More frequency histograms (Cython)

```python
s = ms(EllipticCurve('11a'))
M = 1000000 # the following takes about 1 second
stats.TimeSeries([s(a, M) for a in range(M)]).plot_histogram()
```

Note that there are only 38 distinct values in $\mathbb{Z}(10^6)$ and 40 in $\mathbb{Z}(1500000)$. 
Sorry...

- But I can’t tell you “the answer” yet.
- Since I’m not sure what to ask or even if *this* is a good question...
- So let’s consider another question.
Return to $M = 13$ and make a random walk

```python
E = EllipticCurve('11a')
s = E.modular_symbol()
M = 13; v = [s(a/M) for a in range(M)]; print(v)
w = stats.TimeSeries(v).sums()
w.plot() + points(enumerate(w), pointsize=30, color='black')
```

```
[1/5, -4/5, 17/10, 17/10, -4/5, -4/5, -4/5, -4/5, -4/5, -4/5, 17/10, 17/10, -4/5]
```
How about $M = 20$?

```python
s = EllipticCurve('11a').modular_symbol()
M = 20; v = [s(a/M) for a in range(M)]
w = stats.TimeSeries(v).sums()
w.plot() + points(enumerate(w), pointsize=30, color='black')
```
How about $M = 50$?
How about $M = 100$?
How about $M = 1000$?
How about $M = 10000$?
How about $M = 100000$?
How about $M = 100003$ next prime after 100000?
Notice Anything?

▶ The pictures all look almost the same, as if they are converging to some limiting function.
▶ There’s a similar pattern (with a different picture) for each elliptic curve.
▶ There’s a similar pattern for the $-1$ modular symbol $[\alpha]_E$.
▶ And a similar pattern for modular symbols attached to modular newforms with Fourier coefficients in a number field, or of higher weight (we get a multi-dimensional random walk).
Sum for $M = 10^6$ and $E = 11a$ (rank 0)
Sum for $M = 10^6$ and $E = 37a$ (rank 1)
Sum for $M = 10^6$ and $E = 389a$ (rank 2)
Taking the limit

Normalize the “not so random walk” so it is comparable for different values of $M$. Consider $f_M : [0, 1] \to \mathbb{Q}$ given by

$$f_M(x) = \frac{1}{M} \cdot \sum_{a=1}^{Mx} \left\lfloor \frac{a}{M} \right\rfloor^+, \quad \text{(write on board)}$$

where, by $\sum_{a=1}^{Mx}$ we mean $\sum_{a=1}^{\lfloor Mx \rfloor}$.

Conjecture (-)

The limit $f(x) = \lim_{m \to \infty} f_M(x)$ exists.
What is the limit?

- Let $\omega^+$ be the least real period as before. (NOTE: This need not be the $\Omega_E$ in the BSD conjecture, since when the period lattice is rectangular then $\Omega_E = 2\omega^+$.)

- Let $\sum a_n q^n$ be the newform attached to the elliptic curve $E$. Then:

Conjecture (-)

$$f(x) = \frac{1}{2\pi \omega^+} \cdot \sum_{n=1}^{\infty} \frac{a_n \sin(2\pi nx)}{n^2}.$$ 

- We expect a similar conjecture for the $-1$ modular symbol. What about general newforms of weight at least 2?
Rubin: connections with special values of \( L \)-functions

\[
g(x) = \frac{1}{2\pi \omega^+} \cdot \sum_{n=1}^{\infty} \frac{a_n \sin(2\pi n x)}{n^2}
\]

1. If we integrate \( g(x) \) from 0 to \( 1/2 \), (up to scaling) we get essentially \( \sum_{n \text{ odd}} \frac{a_n}{n^3} \), which is \( L(E, 3) \) with the Euler factor at 2 removed, which is positive. This shows at least that \( g(x) \) is usually positive.

2. If we evaluate \( g \) at \( 1/4 \), (up to scaling) we get

\[
\sum_{n=1}^{\infty} \chi(n) \frac{a_n}{n^2} = L(E, \chi, 2),
\]

where \( \chi \) is the quadratic Dirichlet character mod 4. So \( g(1/4) \) is always positive.
For $\eta > 0$ and $k \in \mathbb{Z}$, there’s a complex integral that approximates the sum of modular symbols we’re considering.

Unjustified conclusion: for each $\eta$ and $k$,

$$
\frac{1}{M} \sum_{n=1}^{k} \left[ \frac{n}{M} \right]^{+} \sim \frac{1}{2\pi \omega} \cdot \sum_{n=1}^{\infty} \frac{a_n e^{-2\pi \eta}}{n^2} \cdot \sin \left( \frac{2\pi nk}{M} \right).
$$

Set $k = Mx$ gives

$$
f_M(x) = \frac{1}{M} \cdot \sum_{n=1}^{Mx} \left[ \frac{n}{M} \right]^{+} \sim \frac{1}{2\pi \omega} \cdot \sum_{n=1}^{\infty} \frac{a_n e^{-2\pi \eta}}{n^2} \cdot \sin(2\pi nx).
$$

Take the limit as $\eta \to 0$ to get our conjecture.
How? Questions

- How quickly does does $f_M(x)$ converge to the limit in practice?
- How does the following behave

$$d_M = \sqrt{\int_0^1 |f_M(x) - g(x)|^2 dx}$$

- Are the following errors distributed normally with some mean and standard deviation?

$$\{f_M(i/M) - g(i/M) : i = 0, \ldots, M\}$$
Computing $g(x)$ efficiently in Sage

Cython is extremely useful for very efficient numerical approximation of the infinite sum $\sum_{n=1}^{\infty} \frac{a_n \sin(2\pi n x)}{n^2}$:

```cython
%cython
cdef extern from "math.h":
 float sin(float)

def conj(float x, list a):
 cdef float PI = 3.1415926535897932384626433833
 cdef float s = 0
 cdef long an, n = 1
 for an in a:
 s += an * sin(2*PI*n*x) / (n*n)
 n += 1
 return s
```
$f_{13}(x)$ versus $g(x)$ for $E = 11a$ using $10^4$ terms
$f_{50}(x)$ versus $g(x)$ for $E = 11a$ using $10^4$ terms
$f_{1000}(x)$ versus $g(x)$ for $E = 11a$ using $10^4$ terms
$f_{10000}(x)$ versus $g(x)$ for $E = 11a$ using $10^4$ terms
$f_{100000}(x)$ versus $g(x)$ for $E = 11a$ using $10^4$ terms
$f_{1000000}(x)$ versus $g(x)$ for $E = 11a$ using $10^4$ terms
Are the following errors distributed normally with some mean and standard deviation?

$$\{f_M(i/M) - g(i/M) : i = 0, \ldots, M\}$$

(copy to board)
Error term distribution for $M = 50$
Error term distribution for $M = 100$
Error term distribution for \( M = 1000 \)
Error term distribution for $M = 10000$

Clearly not a normal distribution.
The End