Topics:

- Linear systems
- Echelon form and reduced echelon form
- Applications of linear systems
- Vectors, vector equations
- Span, Linear independence
- Linear transformations
- Inverses
- Transposes
- Subspaces
- Basis, dimension
- Row space, column space, null space
- Rank, nullity
- Determinant
- Change of basis
- Dot products
- Orthogonality
- Projection
- Least squares solution
Determine whether the following sentence makes sense as a mathematical statement. You may assume that A is a matrix, T is a linear transformation, and that v_1, \ldots, v_k are vectors in \mathbb{R}^n. You may also assume that all matrices and vectors are the correct sizes to be able to multiply.

1. A has rank m.
2. A is linearly independent.
3. A has nullity 1.
4. A spans \mathbb{R}^n.
5. A is one-to-one.
6. A is onto.
7. A has at most one solution.
8. A has at least one solution.
9. A has no solutions.
10. A has rank n.
11. T has rank m.
12. T is linearly independent.
13. T has nullity 1.
14. T spans \mathbb{R}^n.
15. T is one-to-one.
16. T is onto.
17. T has at most one solution.
18. T has at least one solution.
19. T has no solutions.
20. T has rank n.
21. $Ax = b$ has rank m.
22. $Ax = b$ is linearly independent.
23. $Ax = b$ has nullity 1.
24. $Ax = b$ spans \mathbb{R}^n.
25. $Ax = b$ is one-to-one.

26. $Ax = b$ is onto.

27. $Ax = b$ has at most one solution.

28. $Ax = b$ has at least one solution.

29. $Ax = b$ has no solutions.

30. $Ax = b$ has rank n.

31. $\{v_1, \ldots, v_k\}$ has rank m.

32. $\{v_1, \ldots, v_k\}$ is linearly independent.

33. $\{v_1, \ldots, v_k\}$ has nullity 1.

34. $\{v_1, \ldots, v_k\}$ spans \mathbb{R}^n.

35. $\{v_1, \ldots, v_k\}$ is one-to-one.

36. $\{v_1, \ldots, v_k\}$ is onto.

37. $\{v_1, \ldots, v_k\}$ has at most one solution.

38. $\{v_1, \ldots, v_k\}$ has at least one solution.

39. $\{v_1, \ldots, v_k\}$ has no solutions.

40. $\{v_1, \ldots, v_k\}$ has rank n.
Let A be an $n \times m$ matrix and let $T : \mathbb{R}^m \to \mathbb{R}^n$ be the linear transformation $T(x) = Ax$. Group the following statements into sets of equivalent statements.

1. T is one-to-one.
2. T is onto.
3. $\ker(T) = \{0\}$.
4. $\text{Range}(T) = \mathbb{R}^n$.
5. The equation $Ax = 0$ has exactly one solution.
6. For all $b \in \mathbb{R}^n$, the equation $Ax = b$ has at most one solution.
7. For all $b \in \mathbb{R}^n$, the equation $Ax = b$ has at least one solution.
8. The columns of A are linearly independent.
9. The columns of A span \mathbb{R}^n.
10. $\text{Col}(A)$ has dimension m.
11. $\text{Col}(A)$ has dimension n.
12. $\text{Row}(A)$ has dimension m.
13. $\text{Row}(A)$ has dimension n.
14. A has rank m.
15. A has rank n.
16. A has nullity 0.
17. $\text{Null}(A) = \{0\}$.
18. A has nullity $m - n$.
19. If $T(u) = T(v)$ then $u = v$.
20. For all $b \in \mathbb{R}^n$, $T(x) = b$ has at least one solution.
21. For all $b \in \mathbb{R}^n$, $T(x) = b$ has at most one solution.
1. Let $T: \mathbb{R}^m \to \mathbb{R}^m$ be a function. To check if T is a linear transformation, I need to...

2. Let S be a subset of \mathbb{R}^n. To check if S is a subspace, I need to....

3. Let $v_1, v_2, \ldots, v_k \in \mathbb{R}^n$ be a set of vectors. To check if these vectors form an orthogonal set, I need to...

4. Let A be an $n \times n$ matrix, let $\lambda \in \mathbb{R}$ be a scalar, and let $v \in \mathbb{R}^n$ be a vector. To check if v is an eigenvector of A with eigenvalue λ, I need to....

5. Let A be an $n \times n$ matrix. To determine the eigenvalues of A, I need to...

6. Let A be an $n \times n$ matrix. To compute A^{-1} (if it exists), I need to....

Prove each of the following statements. (Remember “or” is inclusive! If the prerequisites for a class are 308 or 307, and you have taken both, you can still take the class!)

1. Let $T_1: \mathbb{R}^m \to \mathbb{R}^k$ and $T_2: \mathbb{R}^k \to \mathbb{R}^n$ be linear transformations.
 (a) If $T_2 \circ T_1$ is onto, then T_1 is onto.
 (b) If $T_2 \circ T_1$ is one-to-one, then T_1 is one-to-one.
 (c) If $T_2 \circ T_1$ is not onto, then T_1 is not onto or T_2 is not onto.
 (d) If $T_2 \circ T_1$ is not one-to-one, then T_1 is not one-to-one or T_2 is not one-to-one.

2. If $\{v_1, v_2, v_3\}$ are linearly dependent vectors of \mathbb{R}^n, then $\{v_1 + v_2, v_2 + v_3, v_1 + v_3\}$ are linearly dependent vectors of \mathbb{R}^n.

3. If $\{v_1, v_2, v_3\}$ are linearly independent vectors of \mathbb{R}^n, then $\{v_1 + v_2, v_2 + v_3, v_1 + v_3\}$ are linearly independent vectors of \mathbb{R}^n.

4. If $\{v_1, v_2, v_3\}$ span a subspace S, then $\{v_1 + v_2, v_2 + v_3, v_1 + v_3\}$ span the same subspace S.

5. If $\{v_1 + v_2, v_2 + v_3, v_1 + v_3\}$ span a subspace S, then $\{v_1, v_2, v_3\}$ span the same subspace S.

Match a, b, c, d to i, ii, iii, iv
For each picture, determine whether each function \((T_1, T_2, \text{ and their composition})\) is one-to-one and whether each function is onto.