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The goal of these lectures is to serve as a “user’s guide” to obstructions to the existence
of k-points on smooth projective varieties, where k is a global field. As such, the focus will
be on examples and the main ideas behind results, rather than detailed proofs (for those I
will refer you to a number of excellent references).

Remark 0.1. In addition to asking whether the existence of kv-points for all places v implies
the existence of a k-point (i.e., whether the Hasse principle holds), one can also ask whether
a set of kv-points can be approximated by a k-point, i.e., whether X satisfies weak approxi-
mation. Many of the tools, conjectures, and results for the question of existence of rational
points also hold for the question of density. For time and space considerations, we will focus
mainly on the Hasse principle and its obstructions and mention weak approximation only
when there are differences.
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General notation. Throughout, k will denote a field, kalg will be a fixed algebraic closure,
and ksep will be the separable closure of k in kalg. We write Gk for the absolute Galois group
Gal(ksep/k).

A k-variety will be a separated scheme of finite type over k. If X is a k-variety we will write
Xalg and Xsep for the base changes X×Spec k Spec kalg and X×Spec k Spec ksep, respectively. If

k has characteristic 0, then we will sometimes write k for kalg = ksep and X for Xalg = Xsep.
If X and S are k-schemes, we write X(S) = Homk(S,X). If S = SpecA, then we write

X(A) for X(SpecA).

1. An example of a variety that fails the Hasse principle

Example 1.1 ([Lin40,Rei42]). Let C denote the smooth genus 1 curve given by

V (2y2 − x4 + 17z4) ⊂ PQ(1, 2, 1),

where PQ(1, 2, 1) denotes the weighted projective space in which x and z have degree 1 and y
has degree 2. Alternatively, we can view C as the intersection of the following two quadrics
in P3

Q1 : 2Y 2 −W 2 + 17Z2, Q2 : WZ −X2.

We claim that C(AQ) 6= ∅ and C(Q) = ∅.
Let us first prove local solubility. The existence of an R-point is clear. The curve C

has good reduction at all p 6= 2, 17. As the Weil conjectures (proved by Weil in the case
of curves [Wei48]) show that a smooth genus 1 curve always has an Fq-point (for any q),
C(Fp) 6= ∅ for all primes p 6= 2, 17. Furthermore, a smooth Fp-point lifts to a Qp-point by
Hensel’s Lemma. Since 2 ≡ 62 mod 17 and 34 ≡ 17 mod 64, Hensel’s Lemma also implies
that (√

2 :
√

2 : 0
)
∈ C(Q17) and

(
4
√

17 : 0 : 1
)
∈ C(Q2).

Now we prove that C(Q) = ∅. Assume that C(Q) 6= ∅ and let (x0 : y0 : z0) be a Q-rational
point. By scaling, we may assume that x0, y0, z0 ∈ Z. If there exists a prime p that divides
x0 and z0, then p4 must divide 2y2

0 and so p2|y0. Therefore, we may scale x0, y0, z0 to ensure
that x0 and z0 are relatively prime. A similar argument shows that we may also assume that
gcd(x0, y0) = gcd(y0, z0) = 1.

Since x0, y0 and z0 are pairwise relatively prime, for any odd prime p|y0, we must have
17 ∈ F×2

p . Since 17 is 1 modulo 4, quadratic reciprocity then implies that p ∈ F×2
17 for any

odd prime p|y0. Since −1, 2 ∈ F×2
17 , this implies that y0 = y′20 mod 17. Substituting this into

the defining equation for C shows that 2 ∈ F×4
17 , resulting in a contradiction. �
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This proof arguably raises more questions than it answers. Was it necessary to work with
the prime p = 17? Does a similar argument work for any equation of the form

ay2 − x4 + bz4 = 0?

If an analogous argument for ay2 − x4 + bz4 = 0 doesn’t result in a contradiction, do we
expect there to be a rational point?

Given these questions, one might prefer to have a proof which is less ad hoc, perhaps as
the expense of brevity, which may then generalize more easily to other varieties.

Example 1.2. We again consider the curve C given by

V (2y2 − x4 + 17z4) ⊂ PQ(1, 2, 1),

and give a different argument to prove that it has no rational points. We will phrase our
argument in terms of the Hilbert symbol. Let v be a place of Q and let a, b ∈ Q×v . Recall
the definition of the Hilbert symbol

〈a, b〉v =

{
−1 if as2 + bt2 = u2 has only the trivial solution in Qv,

1 otherwise.

Since a conic over Qv has infinitely many nontrivial solutions as soon as there is one nontrivial
solution, the Hilbert symbol may equivalently be defined as

〈a, b〉v =

{
−1 if b /∈ NormQv(

√
a)/Qv(Qv(

√
a)×)

1 if b ∈ NormQv(
√
a)/Qv(Qv(

√
a)×)

In this proof, we will work with the model of C that is given by the intersection of two
quadrics in P3. Let P = [X0, Y0, Z0,W0] ∈ C(Qv). Since Z0W0 = X2

0 , whenever Z0W0Y0 6= 0,
we have

〈17, Z0/Y0〉v = 〈17,W0/Y0〉v.
We claim that 〈17, Z0/Y0〉v = 1 if v 6= 17 and 〈17, Z0/Y0〉v = −1 if v = 17. Indeed, if
17 ∈ Q×2

v (which includes v = 2 or v = ∞) then this is clear. Assume that 17 /∈ Q×2
v and

v 6= 17. Since v((W0/Y0)2 − 17(Z0/Y0)2) = v(2) = 0, at least one of W0/Y0 or Z0/Y0 must
be a v-adic unit. As Qv(

√
17)/Qv is unramified if v 6= 17, all v-adic units are norms and so

〈17, Z0/Y0〉v = 〈17,W0/Y0〉v = 1.
It remains to consider the case that v = 17. Modulo 17, (W0/Y0)2 ≡ 2 so W0/Y0 is a

square modulo 17 if and only if 2 is a fourth power modulo 17. Since F×4
17 = {1,−1, 4,−4},

W0/Y0 mod 17 6∈ F×2
17 and so (17,W0/Y0)17 = −1.

Now assume that there exists a point P = [X0, Y0, Z0,W0] ∈ C(Q). One can check that
Z0W0Y0 6= 0, thus we may consider the product of Hilbert symbols∏

v

〈17,W0/Y0〉v.

One the one hand, this product is equal to −1 by the above claim. On the other hand, since
W0/Y0 ∈ Q× the product formula for Hilbert symbols states that this product is 1. This
gives a contradiction, thus C(Q) = ∅. �

At first blush, this argument may seem no better than then previous argument. However,
we will see later that this argument is an example of a general phenomenon known as the
Brauer-Manin obstruction.
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2. The Brauer group

2.1. The Brauer group of a field. We will give a brief overview of the Brauer group of a
field. For more details see [GS06, §§2,4] and [Mil, Chap. 4].

Let k be a field, let ksep denote a separable closure, and let Gk := Gal(ksep/k). A central
simple algebra (CSA) A over k is a finite-dimensional k-algebra whose center is k and which
has no non-trivial proper 2-sided ideals. Wedderburn’s theorem implies that every central
simple algebra over k is isomorphic to Mn(D) for some positive integer n and some division
algebra D with center k. Let A and A′ be two central simple k-algebras; we say that A and
A′ are Brauer equivalent if A⊗k Mn(k) ∼= A′⊗k Mm(k) for some n,m ∈ Z>0. Then we define
the Brauer group of k

Br k :=
{CSA/k}

Brauer equivalence
;

this set forms an abelian group under tensor product. Equivalently, one can define the Brauer
group using Galois cohomology

Br k := H2(Gk, k
sep×).

(For a proof that these definitions are, in fact, equivalent see [GS06, Thm. 4.4.5 and Cor.
2.4.10].)

Exercise 2.1. Assume that k is algebraically closed. Prove that Br k = 0. (Hint: Let D be
division ring that is finite dimensional over k, let d ∈ D×, and consider k(d).) �

Example 2.2 (Wedderburn’s little theorem). If k is finite, then Br k = 0. �

Exercise 2.3. Prove that BrR ∼= Z/2Z and that the unique nontrivial element is represented
by the Hamiltonian quaternions

H := R⊕ Ri⊕ Rj ⊕ Rij,

where i2 = j2 = −1 and ji = −ij. �

Example 2.4. If k is a nonarchimedean local field, then local class field theory gives a
canonical isomorphism, the invariant map,

invk : Br k
∼−→ Q/Z.

If k is the completion of a global field at a nonarchimedean place v, then we will write invv
for invk. �

Example 2.5. Let k be a global field and let Ωk denote the set of places of k. Then the
fundamental exact sequence of global class field theory completely characterizes the Brauer
group of k; indeed, it states that the sequence

0 −→ Br k −→
⊕
v∈Ωk

Br kv

∑
v invv−→ Q/Z −→ 0 (2.1)

is exact. Here invv denotes the invariant map from Example 2.4 in the case that v is
nonarchimedean, it denotes the unique composition Br kv

∼→ 1
2
Z/Z ↪→ Q/Z in the case that

v is real, and it denotes the unique inclusion BrC = 0 ↪→ Q/Z if v is complex. �
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If K is any extension of k, we have a homomorphism

Br k → BrK, A 7→ A⊗k K.
We define the relative Brauer group (of the extension K/k) to be the kernel of this homo-
morphism and we denote it Br(K/k). A Brauer class A ∈ Br k is said to be split by K or
split over K if A is contained in the subgroup Br(K/k). If K/k is a Galois extension, then
Hilbert’s Theorem 90 and the inflation-restriction sequence together yield an isomorphism

Br(K/k) ∼= H2(Gal(K/k), K×).

An element A ∈ Br k is cyclic if there exists a finite cyclic extension L/k (i.e., a Galois
extension whose Galois group is a finite cyclic group) such that A is split by L.

Exercise 2.6. Let L/k be a finite cyclic extension of degree n, let σ be a generator of the
Galois group Gal(L/k), and let b ∈ k×. Consider the finite-dimensional k-algebra

(σ, b) :=
⊕n−1
i=0 Ly

i

yn = b, σ(α)y = yα for all α ∈ L
.

Prove that (σ, b) is a central simple k-algebra which is split by L. �
Throughout, we will identify the algebras from Example 2.6 with their class in Br k.
If L/k is a cyclic extension, then H1(Gal(L/k), L×) can be computed using Tate coho-

mology yielding that Br(L/k) ∼= k×/NormL/k(L
×). In fact, this isomorphism can be made

explicit. As explained in [GS06, Cor. 4.7.4], we have

k×

NormL/k(L×)

∼−→ Br(L/k), b 7→ (σ, b), (2.2)

where σ is a fixed generator of Gal(L/k). In particular, the algebra (σ, b) is trivial in Br k if
and only if b ∈ NormL/k(L

×).

Example 2.7. Let k be a nonarchimedean local field and let L/k be an unramified cyclic
extension. If σ ∈ Gal(L/k) induces the Frobenius map on the residue field then [Mil, Chap.
IV, Ex. 4.2 and Prop. 4.3]

invk ((σ, b)) =
v(b)

[L : k]
∈ Q/Z.

�
Remark 2.8. If σ and τ are generators of Gal(L/k), then for any b ∈ k×, (σ, b) and (τ, b)
may not be Brauer equivalent, but always generate the same subgroup of Br k. In situations
where we are concerned with the subgroup generated by (σ, b) rather than the particular
generator, we will abuse notation and write (L/k, b) for any algebra of the form (σ, b), where
σ is a generator of Gal(L/k).

If k contains the nth roots of unity, then by Kummer theory any cyclic extension L is
of the form k( n

√
a) for some a ∈ k×. Further, any generator σ ∈ Gal(L/k) is determined

by a primitive nth root of unity ζ. In this case, we write (a, b)ζ for the cyclic algebra class
( n
√
a 7→ ζ n

√
a, b) and (a, b)n for (k( n

√
a)/k, b). The algebra (class) (a, b)ζ is called a symbol

algebra.

Exercise 2.9. Assume that µn ⊂ k. Let a, b ∈ k× and fix a primitive nth root of unity ζ.
Prove that (a, b)ζ = (b, a)ζ−1 and (a, b)ζ = (a, b(−a)i)ζ for all i ∈ Z. �
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2.2. The Brauer group of a scheme. Let X be a scheme. We define the (cohomological)
Brauer group of X to be

BrX := H2
et(X,Gm).

If X is regular, integral, and noetherian, then we have an injection BrX ↪→ Br k(X),
where k(X) denotes the function field of X. Furthermore, if n is a positive integer that is
invertible on X or if n is any positive integer and dimX ≤ 2, then we have an exact sequence

0 −→ (BrX)[n] −→ (Br k(X))[n]
⊕x∂x−→

⊕
x∈X(1)

H1

(
κ(x),

1

n
Z/Z

)
, (2.3)

where X(1) denotes the set of codimension 1 points of X and κ(x) denotes the residue
field of x. The maps ∂x are called residue maps and an element A ∈ Br k(X)[n] is said to be
unramified at x ∈ X(1) if A ∈ ker ∂x. Thus, we may view (BrX)[n] as the unramified subgroup
of (Br k(X))[n].

Lemma 2.10. Let L/k(X) be a cyclic extension of prime degree p that is unramified at x ∈
X(1). Then (L/k(X), b) ∈ ker ∂x if and only if x splits completely in L or vx(b) ≡ 0 mod p,
where vx denotes the discrete valuation associated to x.

Remark 2.11. There are many definitions of residue maps in the literature. Although the
definitions do not always agree, in each case the kernels agree. Since we are mainly concerned
with the kernel of ∂x, we will allow ourselves this ambiguity. See [CT95, Remark 3.3.2] for
an overview of the different definitions.

In the case that X is a variety over a field k, we can consider the following filtration of
the Brauer group:

Br0X := im(Br k → BrX) ⊂ Br1X := ker(BrX → BrXsep) ⊂ BrX.

Elements of Br0X are constant and elements of Br1X are algebraic. Any remaining elements
are termed transcendental. We say that X has trivial Brauer group if BrX = Br0X.

2.2.1. Algebraic Brauer classes. If k[Xsep]× = ksep×, i.e., if the only regular invertible func-
tions on Xsep are constants, then the exact sequence of low degree terms from the Hochschild-
Serre spectral sequence yields

0→ PicX → (PicXsep)Gk → Br k → Br1X → H1(Gk,PicXsep)→ H3(k,Gm).

If k is a local or global field, then H3(k,Gm) = 0. (This follows from statements in [NSW08]
as explained in [Poo14, Rmk. 6.7.10].) Hence, if k is a local or global field then we have an
isomorphism

Br1X

Br0 k

∼−→ H1(k,PicXsep). (2.4)

This isomorphism is the main tool in computing explicit representatives for the algebraic
part of the Brauer group. See [VA08,EJ12] for some examples.
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2.2.2. Transcendental Brauer classes: general approaches. For simplicity, we restrict to the
case when char(k) = 0. From the definition of Br1, we have an inclusion

BrX

Br1X
↪→
(
BrX

)Gk
This map need not be surjective (see [HS05] for an example), but Colliot-Thélène and Sko-
robogatov proved that the cokernel is always finite [CTS13].

By [Gro68, pp.144-147], we have an exact sequence of abelian groups

0→ (Q/Z)b2−ρ → BrX → ⊕` H3(X,Z`(1))tors → 0,

where b2 is the second Betti number of X and ρ is the rank of NSX. This exact sequence
allows us to compute the group structure of BrX; however, we need to understand the
structure of BrX as a Galois module. To the best of my knowledge, there is currently no
general method to do so.

2.2.3. Transcendental or geometric Brauer classes: some examples. The first example of an
explicit transcendental Brauer class was constructed by Artin and Mumford in 1972 [AM72].
The first example exploited for arithmetic purposes was constructed by Harari in 1994 [Har96].
While we are still far from a general approach, over the past decade there have been a num-
ber of advances in the computation of transcendental elements. We review a few highlights
here:

(1) Our understanding of the Weil-Châtelet group of elliptic curves with rational 2-torsion
can be translated into techniques for constructing representatives of 2-torsion Brauer
classes on certain K3 surfaces (typically Kummer surfaces of products of elliptic
curves with full rational 2-torsion or those with a genus 1 fibration whose Jacobian
fibration has full rational 2-torsion) [Wit04,HS05, Ier10].

(2) The purity theorem (2.3) can be used to give representatives for 2-torsion Brauer
classes on surfaces that are double covers of ruled surfaces [CV14a, IOOV, BBM+].
This approach can also be viewed as a generalization of (1) (see [CV14b, CV14a]).
If one is only interested in the structure of BrX as a Galois module, and not in
constructing representatives, then the same results can be obtained by purely coho-
mological arguments [Sko].

(3) Hodge theoretic constructions yield K3 surfaces of degree 2 together with represen-
tatives for 2-torsion Brauer classes. While the constructions were originally stated
over the complex numbers, they can be carried out over any field [HVAV11,HVA13].

(4) If X is the Kummer surface of a product of elliptic curves E and E ′, then Skoroboga-
tov and Zarhin relate the `-torsion of the Brauer group of X to homomorphisms
between E and E ′ and between E[`] and E ′[`] [SZ12]. This was used by Ieronymou,
Skorobogatov, and Zarhin [ISZ11] to compute the odd part of the transcendental
Brauer group of diagonal quartic surfaces and by Newton [New] to compute the odd
part of the transcendental Brauer group of Kum(E×E) where E is an elliptic curve
with complex multiplication by a maximal order.

3. Local and global points

Throughout this section, we assume that k is a global field and that X is a smooth,
geometrically integral k-variety. If S is a finite set of places of k, we write Ok,S for the ring
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of S-integers. If v is a place of k, we write kv for the completion of k at v and Ov for the
valuation ring in kv. Let Ωk denote the set of places of k and we write Ak for the adèle ring
of k. Recall that Ak is the restricted product

∏′
v∈Ωk

(kv,Ov) and as such has a topology.
For any k-variety X, there exists a finite set S ⊂ Ωk and a separated scheme X of finite

type over Ok,S such that Xk ∼= X. Then one can show that the set of adèlic points X(Ak)
is equal to the resticted product

∏′
v∈Ωk

(X(kv),X (Ov)) [Poo14, Exer. 3.4]. The set X(kv)
inherits a topology from kv and hence X(Ak) can be given the restricted product topology
(see [Poo14, §2.5.2] or [Con12] for more details). If X is proper, then X(kv) = X (Ov) and
so X(Ak) =

∏
v∈Ωk

X(kv).

3.1. The Brauer-Manin obstruction. In this section we describe the Brauer-Manin ob-
struction, which was introduced by Manin [Man71]. Manin observed that the fundamental
exact sequence of class field theory (2.1) and the functoriality of the Brauer group could be
combined to define a subset X(Ak)

Br of X(Ak) that contains X(k).
For any Pv ∈ X(kv) and any A ∈ BrX, we can pullback A along Pv and obtain an element

in Br kv, the evaluation of A in Pv; we denote this element A(Pv).

Lemma 3.1. Assume that there exists a separated scheme X of finite type over Ov with
Xkv ∼= X and such that A ∈ im (BrX → BrX). Then A(Pv) = 0 ∈ Br kv for all Pv ∈ X (Ov).

Proof. By the functoriality of the Brauer group, A(Pv) ∈ BrOv. By [Mil80, IV.2.13], the
quotient map Ov → Fv induces an isomorphism BrOv → BrFv. As BrFv is trivial, this
completes the proof. �

Lemma 3.2. For any A ∈ BrX, the image of X(Ak) −→
∏

v Br kv, (Pv) 7→ (A(Pv)) is
contained in ⊕v Br kv.

Proof. For any A ∈ BrX and any (Pv) ∈ X(Ak), all but finitely many places of v satisfy the
assumptions of Lemma 3.1. �

Thus, for any A ∈ BrX, we have the following commutative diagram

X(k) �
� //

A(−)

��

X(Ak)

A(−)

��
Br k �

� //
⊕

v Br kv

Therefore, by the fundamental sequence of global class field theory (see Example 2.5), we
have

X(k) ⊂ X(Ak)
A :=

{
(Pv) ∈ X(Ak) :

∑
v

invvA(Pv) = 0 ∈ Q/Z

}
.

For any subset S ⊂ BrX, we can consider the set of adelic points orthogonal to the elements
in S, which we denote by X(Ak)

S := ∩A∈SX(Ak)
A. We will be particularly interested in the

cases where S = BrX and S = Br1X; these are called the Brauer-Manin set and the algebraic
Brauer-Manin set of X, respectively, and denoted X(Ak)

Br and X(Ak)
Br1 , respectively. It is

clear that we have the following containments.

X(k) ⊂ X(Ak)
Br ⊂ X(Ak)

Br1 ⊂ X(Ak).
8



Lemma 3.3. Let kv be a local field and let X be a smooth k-variety. For any A ∈ BrX,

evA : X(kv)→ Br kv

is locally constant.

Proof. To prove continuity it suffices to show that ev−1
A (A′) is open for all A′ ∈ im evA. By

replacing [A] with [A]− [evA(x)], we reduce to showing that ev−1
A (0) is open. We may also

assume that X is irreducible and affine.
By [Hoo80], A ∈ BrX is represented by an Azumaya algebra AAz. Let n2 denote the rank

of AAz and f : W → X be the associated PGLn-torsor. We complete the proof by noting that
ev−1
A (0) is exactly equal to f(W (kv)), which is open by the implicit function theorem. �

Proposition 3.4. If X is smooth, then X(Ak)
Br is closed in the adelic topology.

Proof. Let A ∈ BrX and let S be the finite set of primes for which the hypotheses of
Lemma 3.1 are not satisfied. Let (Pv) ∈ X(Ak) be in the closure of X(Ak)

A. Thus, there
exists a (Qv) ∈ X(Ak)

A such that

(1) Qv ∈ X (Ov) for all v /∈ S such that Pv ∈ X (Ov), and
(2) Qv is close enough to Pv so that evA(P ) = evA(Pv) for all v ∈ S and all v such that

Pv 6∈ X (Ov).
Then by Lemma 3.1 evA(Pv) = evA(Qv) for all v so (Pv) is contained in X(Ak)

A. Thus
X(Ak)

A is closed and as X(Ak)
Br = ∩A∈BrXX(Ak)

A, X(Ak)
Br is also closed. �

3.2. The étale-Brauer obstruction. Let G be a finite étale group scheme over k and let
f : Y → X be a fppf G-torsor over X.1 Then, for any k-point x ∈ X(k), the fiber Yx is
a G-torsor over k. As G-torsors over k are classified by H1(k,G), we obtain a partition of
X(k) indexed by H1(k,G), namely

X(k) =
∐

τ∈H1(k,G)

{x ∈ X(k) : [Yx] = τ} . (3.1)

For any cocycle τ representing a class in H1(k,G), we may use contracted products to
construct a k/k-twist f τ : Y τ → X of f : Y → X such that

f τ (Y τ (k)) = {x ∈ X(k) : [Yx] = [τ ]} .
(See [Sko01, §2.2] or [Poo14, §8.4] for details on the construction.) Therefore,

X(k) =
∐

[τ ]∈H1(k,G)

f τ (Y τ (k)). (3.2)

Example 3.5. Let Y ⊂ P5 be the complete intersection cut out by the following equations:

s2 = xy + 5z2,

s2 − 5t2 = x2 + 3xy + 2y2,

u2 = 12x2 + 111y2 + 13z2,

and let σ : P5 → P5 denote the involution (s : t : u : x : y : z) 7→ (−s : −t : −u : x : y : z).
Note that since V (s2, s2− 5t2, u2) ⊂ P2 and V (xy+ 5z2, x2 + 3xy+ 2y2, 12x2 + 111y2 + 13z2)

1If you are not familiar with torsors, you should think of Y as a scheme that “locally” over X is isomorphic
to G× U . See [Poo14, §6.5] or [Sko01, §2] for precise definitions.
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are both empty, σ|Y has no fixed points. Thus the quotient map f : Y → X := Y/σ is a
torsor under the finite étale group Z/2Z.

Let us consider X(Q). A Q-point on X is the image of a degree 2 zero-dimensional closed
subscheme on Y whose Q-points are interchanged by σ, i.e.,

X(Q) =
∐

[d]∈Q×/Q×2

{
{P, σ(P )} : P ∈ Y (Q(

√
d)), τ(P ) ∈ {P, σ(P )} ∀τ ∈ Gal(Q(

√
d)/Q)

}
.

The condition that τ(P ) ∈ {P, σ(P )} for all τ ∈ Gal(Q(
√
d)/Q) implies that P = (s0

√
d :

t0
√
d : u0

√
d : x0 : y0 : z0) where (s0 : t0 : u0 : x0 : y0 : z0) is a Q-point on a variety Y d cut

out by the equations

ds2 = xy + 5z2,

d(s2 − 5t2) = x2 + 3xy + 2y2,

du2 = 12x2 + 111y2 + 13z2.

(3.3)

In other words,

X(Q) =
∐

[d]∈Q×/Q×2

fd(Y d(Q)),

where fd : Y d → X is obtained by quotienting by σ|Y d . �

The partition given in (3.2) is preferable to that in (3.1), despite the additional machinery
required, since (3.2) allows us to use Brauer-Manin conditions on Y τ to obtain conditions
on X. Indeed, (3.2) implies that

X(k) ⊂
⋃

[τ ]∈H1(k,G)

f τ (Y τ (Ak)
Br).

Furthermore, this containment holds for any torsor f : Y → X under a finite étale group G.
Thus, we have

X(k) ⊂ X(Ak)
et,Br :=

⋂
f : Y→X torsor

under finite étale G

⋃
[τ ]∈H1(k,G)

f τ (Y τ (Ak)
Br). (3.4)

The set X(Ak)
et,Br is called the étale-Brauer set of X. It can be strictly smaller than the

Brauer-Manin set [Sko99], so gives a stronger obstruction.

Proposition 3.6. Assume that X is proper. For any torsor f : Y → X under a finite étale
k-group G, Y τ (Ak) = ∅ for all but finitely many [τ ] ∈ H1(k,G).

Proof. This is [Sko01, Prop. 5.3.2]. �

Corollary 3.7. If X is proper, then X(Ak)
et,Br is closed in the adelic topology.

Proof. This is [Sko01, Prop. 5.3.3]. �
10



3.3. Beyond étale-Brauer. In 2010, Poonen constructed a Châtelet surface bundle X over
a curve C/k such that X(Ak)

et,Br 6= ∅ and X(k) = ∅. This example demonstrates that the
étale-Brauer obstruction is insufficient to explain all counterexamples to the Hasse princi-
ple. Similar examples have since been constructed by Harpaz–Skorobogatov [HS14], Colliot-
Thélène–Pál–Skorobogatov [CTPS], and Smeets [Sme]; each successive example shows that
the étale-Brauer obstruction is still insufficient to explain all failures of the Hasse principle
even if we restrict to a smaller class of projective varieties S. For example, it is not enough
to restrict to:

• varieties of dimension at most 2 [HS14],
• varieties which are uniruled [CTPS],
• varieties with trivial Albanese variety [Sme], or,
• if the abc conjecture holds, simply connected varieties [Sme].

The above examples have a fundamental feature in common: X is obtained as a fiber
product Y ×P1 Z with the following properties

(1) the image of Y (k) in P1(k) is a finite set T and
(2) for all t ∈ T , the fiber of Z → P1 above t has no rational points.

These properties immediately imply that X(k) = ∅. Indeed, by factoring the map X → P1

through Y , property (1) implies that all k-points of X lie over T ; however, by factoring the
map X → P1 through Z, property (2) shows that no k-points lie over T .

The difficulty in the constructions is in ensuring that X has the desired properties (e.g.,
2-dimensional, uniruled, trivial Albanese, etc.) and that X(Ak)

et,Br 6= ∅, and in this step the
arguments can vary significantly. See [Poo14, §8.6.2] for a nice explanation (with pictures!)
of a slight variation on the example of Colliot-Thélène, Pál, and Skorobogatov [CTPS, §3].

4. Geometry and arithmetic

We are interested in determining classes of varieties S, defined by some geometric property,
for which

(1) S satisfies the Hasse principle, i.e., X(Ak) 6= ∅ ⇒ X(k) 6= ∅ ∀X ∈ S,
(2) the Brauer-Manin obstruction is the only obstruction to the Hasse principle for S,

i.e., X(Ak)
Br 6= ∅ ⇒ X(k) 6= ∅ ∀X ∈ S, or

(3) the étale-Brauer obstruction is the only obstruction to the Hasse principle for S, i.e.,
X(Ak)

et,Br 6= ∅ ⇒ X(k) 6= ∅ ∀X ∈ S.

Remark 4.1. We will sometimes say “the Brauer-Manin obstruction (or the étale-Brauer
obstruction) is sufficient to explain all failures of the Hasse principle for S” instead of “the
Brauer-Manin obstruction (or the étale-Brauer obstruction) is the only obstruction to the
Hasse principle for S”.

Example 4.2. The Hasse-Minkowski theorem says that all quadric hypersurfaces satisfy the
Hasse principle. �

Example 4.3. If the Tate-Shafarevich group of any elliptic curve is finite, then the Brauer-
Manin obstruction is sufficient to explain all failures of the Hasse principle on genus 1
curves [Man71]. More precisely, if C is a genus 1 curve over k, and the Tate–Shafarevich
group of the Jacobian of this particular curve C is finite, then C(k) 6= ∅ if and only if
C(Ak)

Br 6= ∅. �
11



By the Lang-Nishimura lemma [Lan54,Nis55] (also see [VA13, Lemma 1.1]), the existence
of a smooth k-rational point is a (k-)birational invariant of proper integral varieties. Thus,
it will be helpful to understand the classification of smooth proper surfaces up to birational
equivalence. As every smooth proper surface is projective [Zar58b], we reduce to considering
smooth projective surfaces.

Remark 4.4. This section was heavily influenced by Beauville’s book Complex Algebraic
Surfaces [Bea96], Hassett’s article Rational surfaces over nonclosed fields [Has09], and Várilly-
Alvarado’s article Arithmetic of del Pezzo surfaces [VA13].

4.1. Kodaira dimension and other numerical invariants. Let X be a smooth projec-
tive variety and let ωX denote the canonical sheaf. The Kodaira dimension of X, denoted
κ(X) is maxn dim(φω⊗nX

(X)) if H0(X,ω⊗nX ) 6= ∅ for some n, and −∞ otherwise. Note that

κ(X) ∈ {−∞, 0, . . . , dim(X)}.
Exercise 4.5. Let X be a curve. Prove that

κ(X) = −∞⇔ g(X) = 0, κ(X) = 0⇔ g(X) = 1, and κ(X) = 1⇔ g(X) ≥ 2.

�
The Kodaira dimension of X gives a rough measure of the geometric complexity of X.

Varieties of smaller Kodaira dimension are typically easier to classify. Varieties X of maximal
Kodaira dimension, i.e., with dim(X) = κ(X), are said to be of general type.

To state the classification of surfaces of low Kodaira dimension, we will need some addi-
tional numerical invariants. The irregularity of X is q(X) := dim AlbX , where AlbX denotes
the Albanese variety of X, and the geometric genus of X is pg(X) := h0(X,ωX). More
generally, we may consider the plurigenera of X {Pn(X) := h0(X,ω⊗nX )}n≥1.

The Betti numbers of X are bi := dim Hi(Xsep,Q`), i = 0, . . . 4, where ` is a prime different
from the characteristic of k; they are independent of the choice of `. We write PicX for
the Picard group of X and NSX for the Néron-Severi group of X, i.e., the group of divisors
modulo algebraic equivalence. We write ρ(X) for the (geometric) Picard rank of X, i.e.,
ρ(X) := rank NS PicXalg.

4.2. Geometry of surfaces of Kodaira dimension −∞.

Theorem 4.6 (Enriques [Enr49] in characteristic 0, Mumford [Mum69] in characteristic p).
Let X be a smooth projective surface over a field k. If κ(X) = −∞ then Xkalg is ruled,
i.e., there exist a curve C and a morphism (over kalg) f : Xkalg → C whose generic fiber is
isomorphic to P1

k(C).

Since there are no rational curves on abelian varieties, any map X → A, where A is an
abelian variety, factors through C. Thus, by the universal property of the Albanese variety,
Alb(X) must be isomorphic to Jac(C). In particular, if C has positive genus, then the image
of X → Alb(X) is a curve that is geometrically isomorphic to C and the generic fiber of
X → im(X → Alb(X)) is a curve of genus 0. As the map X → Alb(X) is defined over k,
we have the following.

Proposition 4.7. If Xkalg is ruled over a curve of positive genus, then there exists a higher
genus curve C/k and a morphism f : X → C, defined over k, whose generic fiber is a genus
0 curve, i.e., X is a conic bundle over a positive genus curve.

12



By [Bea96, Prop. III.21], if κ(X) = −∞ then Xkalg is ruled over a positive genus curve if
and only if q(X) > 0. Let us now consider smooth projective surfaces X with κ(X) = −∞
and q(X) = 0.

Theorem 4.8 (Castelnuovo, Zariski [Zar58a] in positive characteristic, see also [Lan81]).
Let X be a smooth projective surface. Then P2(X) = 0 and q(X) = 0 if and only if Xkalg is
birational to P2.

Remark 4.9. Castelnuovo and Zariski proved the forwards direction. The backwards direc-
tion follows since P2 and and q are birational invariants.

A theorem of Iskovskikh further partitions such surfaces.

Theorem 4.10 ([Isk79, Thm. 1]). Let X be a smooth projective geometrically rational
surface over k. Then ω−1

X is ample or X is k-birational to a conic bundle over a genus 0
curve.

Remark 4.11. The two possibilities are not exclusive. For example, P1 × P1 has ample
anti-canonical sheaf and can be realized as a conic bundle over P1.

We say that a smooth projective surface X is a del Pezzo surface if ω−1
X is ample. The

degree of a del Pezzo surface is the self-intersection number ωX · ωX .

Theorem 4.12 ([Man86, Thm. 24.4] if k is perfect, [VA13, Thm. 1.6] in general). Let X
be a del Pezzo surface of degree d over k. Then Xksep is isomorphic to the blow-up of P2

ksep

at 9 − d points in general position or d = 8 and Xksep is isomorphic to P1
ksep × P1

ksep. In
particular, 1 ≤ d ≤ 9.

If X is a del Pezzo surface of degree d ≥ 3, then the anticanonical sheaf is very ample and
embeds X as a smooth degree d surface in Pd. If X is a degree 2 del Pezzo surface, then
the anticanonical map f : X → P2 realizes X as a smooth double cover of P2 ramified along
a quartic curve. If X is a degree 1 del Pezzo surface, then X can be realized as a smooth
sextic hypersurface in the weighted projective space P(1, 1, 2, 3); see [VA13, §1.5.4] for more
details.

4.3. Arithmetic of surfaces of Kodaira dimension −∞. As discussed in the previous
section, a surface of Kodaira dimension −∞ is birational to one of

(1) A conic bundle over a curve of genus ≥ 1,
(2) A conic bundle over a curve of genus 0, or
(3) a del Pezzo surface of degree 1 ≤ d ≤ 9.

As explained in §3.3, Colliot-Thélène, Pál and Skorobogatov [CTPS] have demonstrated
that the étale-Brauer obstruction is insufficient to explain all failures of the Hasse principle
for (1). This is in stark contrast to our expectations for (2) and (3). Indeed, we have

Conjecture 4.13 ([CTS80]). The (algebraic) Brauer-Manin obstruction is the only obstruc-
tion to the Hasse principle (and weak approximation) for geometrically rational surfaces.

Remark 4.14. The Brauer group of a geometrically rational surface is purely algebraic, so
the Brauer-Manin set and the algebraic Brauer-Manin set are equal.
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Classical results imply that del Pezzo surfaces of degree at least 5 satisfy the Hasse princi-
ple (see e.g. [VA13, §2] for proofs) so Conjecture 4.13 holds in these cases.2 In fact, del Pezzo
surfaces of degree 5 and 7 are known to always have a rational point! We note that del Pezzo
surfaces of degree at least 5 have trivial Brauer group [Man86, Thm. 29.3] so satisfying the
Hasse principle is (in this case) equivalent to sufficiency of the Brauer-Manin obstruction.

Del Pezzo surfaces of degree at most 4 can have non-trivial Brauer group and for d = 4, 3 or
2, there exist degree d del Pezzo surfaces that fail the Hasse principle [BSD75,SD62,KT04].
Degree 1 del Pezzo surfaces always have a k-rational point since ω⊗−1

X has a unique base
point; however, degree 1 del Pezzo surfaces can fail to satisfy weak approximation [VA08].

Conjecture 4.13 is known for very few cases of del Pezzos surfaces of degree at most 4, even
conditionally. The strongest result in this direction is due to Wittenberg [Wit07], building
on ideas of Swinnerton-Dyer [SD95]. Wittenberg proves that “sufficiently general” del Pezzo
surfaces of degree 4 satisfy Conjecture 4.13 assuming Schinzel’s hypothesis and finiteness of
Tate-Shafarevich groups of elliptic curves over number fields [Wit07, Thm. 3.2].

In the case of rational conic bundles, Conjecture 4.13 if the conic fibration has at most
5 degenerate fibers [CTSSD87a, CTSSD87b, CT90, SS91] or if the degenerate fibers of the
fibration lie over Q-rational points [BMS14]. This latter result of Browning, Matthiesen,
and Skorobogatov was the first result for rational conic bundles with no assumption on the
number of degenerate fibers.

4.4. Surfaces of Kodaira dimension 0. In this section, we restrict to the case that k has
characteristic 0. For the results in positive characteristic, see [Mum69,BM77,BM76].

Theorem 4.15 ([Bea96, Thm. VIII.2]). Let k be a field of characteristic 0 and let X/k be a
minimal surface of Kodaira dimension 0. Then X lies in exactly one of the following cases.

(1) pg = q = 0. In this case ω⊗2
X
∼= OX and X is an Enriques surface.

(2) pg = 1, q = 0. In this case ωX ∼= OX and X is a K3 surface.
(3) pg = 0, q = 1. In this case X is a bielliptic surface, i.e., Xkalg

∼= (E1 × E2)/G where
G is a finite group of translations of E1 such that E2/G ∼= P1.

(4) pg = 1, q = 2. In this case X is a twist of an Abelian surface.

Example 4.16. Smooth quartic surfaces in P3, smooth complete intersections of a quadric
and a cubic in P4, and smooth complete intersections of 3 quadrics in P5 are all examples of
K3 surfaces.

Assuming finiteness of Tate-Shafarevich groups, we completely understand failures of the
Hasse principle on bielliptic surfaces and twists of abelian surfaces.

Theorem 4.17. [Lin40,Rei42,Man71,Sko99] Assume that Tate-Shafarevich groups of abelian
surfaces are finite. Then

(1) twists of abelian surfaces may fail the Hasse principle,
(2) the Brauer-Manin obstruction is sufficient to explain all failures of the Hasse principle

on twists of abelian surfaces,
(3) the Brauer-Manin obstruction is insufficient to explain all failures of the Hasse prin-

ciple on bielliptic surfaces, and

2Del Pezzo surfaces of degree at least 5 are k-birational to P2 as soon as they have a rational point, so del
Pezzos surfaces of degree at least 5 satisfy weak approximation as soon as they satisfy the Hasse principle.
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(4) the étale-Brauer obstruction is sufficient to explain all failures of the Hasse principle
on bielliptic surfaces.

Proof. For (1), we may take X = C×C where C is the counterexample of Lind and Reichardt
from §1. Manin proved (2)[Man71] and Skorobogatov constructed a bielliptic surface that
demonstrates (3) [Sko99]. It remains to prove (4).

Let X be a bielliptic surface. Then ωX is nontrivial and ω⊗4
X or ω⊗6

X is trivial [Bea96, Cor.
VIII.7]. Therefore, ωX defines a nontrivial finite étale cover π : X ′ → X. Since ω′X is
trivial and χ(OX′) = deg(π)χ(OX)[Bea96, Lemma VI.3], X ′ is a twist of an Abelian surface.
By (3.2), X(k) 6= ∅ if and only if X ′τ (k) 6= ∅ for some τ . Since X ′τ is a twist of an abelian
surface, Manin’s result implies that X(k) 6= ∅ if and only if X ′τ (Ak)

Br 6= ∅ for some τ . This
completes the proof. �

The above proof shows that the study of bielliptic surfaces is naturally related to the
study of (twists of) abelian surfaces. A similar statement holds for Enriques surfaces and
K3 surfaces.

Theorem 4.18. [Bea96, Prop. III.17] Let Y be a K3 surface and let σ : Y → Y be a fixed
point free involution. Then X = Y/σ is an Enriques surface. Conversely, if X is an Enriques
surface, then there is a K3 surface Y and an étale degree 2 morphism f : Y → X.

K3 surfaces are simply connected so have no nontrivial étale covers. Thus, the Brauer-
Manin obstruction on a K3 surface is the same as the étale-Brauer obstruction. A similar
argument to that in Theorem 4.17 yields:

Corollary 4.19. If the Brauer-Manin obstruction is sufficient to explain all failures of the
Hasse principle for K3 surfaces, then the étale-Brauer obstruction is sufficient to explain all
failures of the Hasse principle for Enriques surfaces.

Skorobogatov has conjectured that the Brauer-Manin obstruction is indeed sufficient to
explain all failres of the Hasse principle and weak approximation for K3 surfaces [Sko09].

Remark 4.20. The Brauer-Manin obstruction is necessary to explain all failures of the Hasse
principle and weak approximation for K3 surfaces. Indeed, even the algebraic Brauer-Manin
obstruction does not suffice[Wit04,HVA13]. We also know that the étale-Brauer obstruction
is necessary to explain all failures of the Hasse principle for Enriques surfaces [VAV11,BBM+].

5. A detailed example

The goal of this section is to sketch the proof of the following theorem.

Theorem 5.1 ([VAV11, BBM+]). Let Y ⊂ P5 be the K3 surface cut out by the following
equations

s2 = xy + 5z2,

s2 − 5t2 = x2 + 3xy + 2y2,

u2 = 12x2 + 111y2 + 13z2,

let σ : P5 → P5 denote the involution (s : t : u : x : y : z) 7→ (−s : −t : −u : x : y : z), and let
X denote the Enriques surface Y/σ. Then

X(AQ)et,Br = ∅ and X(AQ)Br 6= ∅.
15



In §5.1, we prove that Y (AQ) is nonempty and in §5.2, we prove that X(AQ)et,Br = ∅.
Next in §5.3, we prove that X(AQ)Br1 6= ∅ and finally in §5.4, we prove that BrX = Br1X
and so X(AQ)Br 6= ∅.

5.1. Local solubility.

Proposition 5.2. We have Y (AQ) 6= ∅, so X(AQ) 6= ∅.

Proof. Let us first recall the statement of the Weil conjectures. For any smooth projective
n-dimensional variety V over Fq, we may define

ζ(V, s) = exp

(
∞∑
m=0

#V (Fqm)

m
q−sm

)
.

Then the Weil conjectures (now theorems [Del74]) state that:

(1) ζ(V, s) =
∏2n

i=0 Pi(q
−s)(−1)i+1

where Pi(T ) ∈ Z[T ], and over C, Pi(T ) factors as
∏

j(1−
αi,jT ) with P0(T ) = 1− T and P2n = 1− qnT .

(2) ζ(V, n− s) = ±qχ(V )(n
2
−s)ζ(V, s),

(3) |αi,j| = qi/2 for all i ∈ [0, 2n] and all j, and
(4) If V is the reduction of a smooth variety W over a global field, then deg(Pi) =

bi(W (C)) where bi denotes the ith Betti number.

Exercise 5.3. Show that (1) implies that

#V (Fqm) =
∑
i,j

(−1)iαmi,j,

for all m ≥ 0. �

By applying the Jacobian criterion over Z, we see that Y/Q is smooth and that Y has
good reduction modulo p for all p outside of

{2, 3, 5, 13, 37, 59, 151, 157, 179, 821, 881, 1433}.

Exercise 5.4. Verify the above claim. (You may want to use Magma or Macaulay2.) �

Let p be a prime of good reduction for Y . The Betti numbers of any K3 surface are
b0 = 1, b1 = 0, b2 = 22, b3 = 0, b4 = 1. Thus, the Weil conjectures imply that

#Y (Fp) = 1 + p2 +
22∑
j=1

α2,j.

Since |α2,j| = p, we must have that |#Y (Fp) − 1 − p2| ≤ 22p. In particular, if p ≥ 23 then
#Y (Fp) 6= ∅. Since Y has good reduction at Fp, any Fp-point lifts to a Qp point by Hensel’s
Lemma [Poo14, Thm. 3.5.54]. Thus, Y (Qp) 6= ∅ for all p outside of

{2, 3, 5, 7, 11, 13, 17, 19, 37, 59, 151, 157, 179, 821, 881, 1433}.

One can check that Y (R) 6= ∅ and that for p > 5 in our remaining list Y has a smooth
Fp-point. Then we can use Hensel’s Lemma to verify that we have the following points over
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Q2,Q3, and Q5: (√
129 : 2

√
21/5 :

√
2113 : 1 : 4 : 5

)
∈ Y (Q2),(

0 : 0 :
√

821/5 : −2 : 1 :
√

2/5
)
∈ Y (Q3),(

1 : 2
√
−1 :

√
1801 : 1 : −4 : 1

)
∈ Y (Q5).

Thus Y (AQ) 6= ∅. �

5.2. Lack of Q-points.

Proposition 5.5. X(AQ)et,Br = ∅.

Proof. Recall that

X(AQ)et,Br =

 ⋃
[d]∈Q×/Q×2

fd(Y d(AQ)Br)

 ∩X(AQ)Br

and that Y d is as in (3.3).

Exercise 5.6. Prove that if d is a squarefree integer divisible by a prime p different from 2
and 5, then Y d(Qp) = ∅. �

Exercise 5.7. Prove that if d < 0, then Y d(R) = ∅. �

Exercise 5.8. Prove that if d ≡ 2 mod 3, then Y d(Q3) = ∅. �

Exercise 5.9. Prove that Y 10(Q5) = ∅. �

From the above exercises, we see that X(AQ)et,Br = f(Y (AQ)Br). Thus it remains to prove
that Y (AQ)Br = ∅. Note that Y is a double cover of the degree 4 del Pezzo surface S ⊂ P4

given by

s2 = xy + 5z2,

s2 − 5t2 = x2 + 3xy + 2y2,

which was studied by Birch and Swinnerton-Dyer [BSD75]. Let g denote the double cover
morphism Y → S. The functoriality of the Brauer group shows that g(Y (AQ)Br) ⊂ S(AQ)Br.
Thus, the following lemma completes the proof of Proposition 5.5. �

Lemma 5.10 ([BSD75, §§4,6]). The algebra A := (5, (x+ y)/x)2 ∈ Br k(S) is in the image
of BrS and S(AQ)A = ∅.

Proof. Since xy = s2 − 5z2 and (x+ y)(x+ 2y) = s2 − 5t2 on S, by (2.2) we have

A =

(
5,
x+ y

x

)
2

=

(
5,
x+ 2y

x

)
2

=

(
5,
x+ y

y

)
2

=

(
5,
x+ 2y

y

)
2

∈ Br k(S).

Thus, by the exact sequence (2.3) and Lemma 2.10, A ∈ BrS. Let us compute S(AQ)A.

If v is split in Q(
√

5)/Q (including v = ∞), then 5 ∈ Q×2
v and so invv(A(Pv)) = 0 for all

Pv ∈ S(Qv).
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Let v be a finite place that is inert in Q(
√

5)/Q. Let P = (s0 : t0 : x0 : y0 : z0) ∈ S(Qv)
and assume that y0 6= 0. By the strong triangle inequality

0 = v (1) = v

(
x0 + 2y0

y0

− x0 + y0

y0

)
≥ min {v(x0/y0 + 2), v(x0/y0 + 1)} .

Thus, if v(x0) ≥ v(y0) then at least one of v(x0/y0 + 2), v(x0/y0 + 1) is equal to 0. Thus
invv(A(Pv)) = 0 by Example 2.7.

Now let Pv = (s0 : t0 : x0 : y0 : z0) ∈ S(Qv) with v(x0) < v(y0). Then a similar argument
shows that one of {1+y0/x0, 1+2y0/x0} is a v-adic unit and so invv(A(Pv)) = 0. Since there
are no Qv-points of S with x0 = y0 = 0, this shows that invv(A(Pv)) = 0 for all Pv ∈ S(Qv)
and all inert v.

It remains to consider the case when v = 5. Let P = (s0 : t0 : x0 : y0 : z0) ∈ S(Q5).
Without loss of generality we may assume that v(s0), v(t0), v(x0), v(y0), v(z0) are all non-
negative and that at least one is 0. Then modulo 5 we have that

s2
0 ≡ x0y0 ≡ x2

0 + 3x0y0 + 2y2
0.

In particular, if one of x0 or y0 is 0 modulo 5, then x0, y0 and s0 are 0 modulo 5. However,
if x0 ≡ y0 ≡ s0 mod 5, then 5z2

0 ≡ −5t20 ≡ 0 mod 25 which results in a contradition. Thus,
we have x0, y0 6= 0 mod 5.

Since x2
0 + 2x0y0 + 2y2

0 ≡ 0 mod 5, x0/y0 is equivalent to 1 or 2 modulo 5. Further, since
(s0/y0)2 ≡ x0/y0 mod 5, x0/y0 is a square modulo 5 and hence must be 1 modulo 5. Then
(x0 + y0/y0) ≡ 2 mod 5 and so (x0 + y0)/y0 is not a norm from Q5(

√
5). Hence, we have

invv(A(Pv)) =

{
0 if v 6= 5
1
2

if v = 5

and so S(AQ)A = ∅. �

5.3. Nonempty algebraic Brauer set. The goal of this section is to prove thatX(AQ)Br1 6=
∅. To do so we must first determine Br1X/BrQ. Recall (see (2.4)) that we have an isomor-
phism

Br1X

Br0X

∼−→ H1
(
GQ,PicX

)
.

The (geometric) Picard group of an Enriques surface is isomorphic to Z/2 × Z10 and the
quotient NumX with its intersection pairing is isomorphic to U ⊕ E8(−1), the unique even
unimodular lattice of rank 10 and signature (1, 9)[CD89, Thms. 1.2.1, 2.5.1 and Prop. 1.2.1].
To compute PicX as a Galois module, we must find explicit curves which generate the Picard
group.

Consider the degeneracy locus of the net of quadrics corresponding to Y , i.e., consider

Z : det (λM1 + µM2 + νM3) = 0,

where M1,M2, and M3 are the symmetric matrices associated to a basis Q1, Q2, Q3 of the net
of quadrics. Since each matrix Mi is a block matrix, with four blocks of size 1 (corresponding
to s2, t2, u2, and z2) and one block of size 2, one can easily deduce that Z is a union of 4
lines and a conic. The singular points of Z correspond to rank 4 quadrics in the net. For
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example, the 6 singular points obtained from an intersection of 2 lines correspond to the
rank 4 quadrics

s2 − xy − 5z2, s2 − 5t2 − (x+ y)(x+ 2y),
u2 − 12x2 − 111y2 − 13z2, 13s2 − 5u2 + 60x2 − 13xy + 555y2,

5t2 + x2 + 2xy + 2y2 − 5z2, 65t2 − 5u2 + 73x2 + 26xy + 581y2.

Each rank 4 quadric will give us two pencils of genus 1 curves on Y . Indeed, over Q any
rank 4 quadric may be written as `0`1 − `2`3 for some linear forms `i. Hence any rank 4
quadric in 6 variables yields (over Q) two pencils of 3-planes: V (`0 − T`2, `1 − 1

T
`3) and

V (`0 − T`3, `1 − 1
T
`2). Intersecting with Y yields two pencils of genus 1 curves, each fiber

realized as the intersection of two quadrics with a 3-plane. Thus we obtain 28 classes of curves
on Y which we denote by F1, G1, . . . , F14, G14, where for each i, Fi and Gi are obtained from
the same rank 4 quadric.

Exercise 5.11. Prove that for all i, Fi + Gi is equal to the hyperplane section and that
{Fi, Gi} is fixed by σ. Verify that

# {i : σ(Fi) = Fi, σ(Gi) = Gi} = 9.

Possibly after relabeling, we will assume that F1, G1, . . . F9, G9 are fixed by σ.
The curve classes fixed by σ are exactly the classes that descend to X. Indeed, one can

check that for every Fi there exists a morphism φi : X → P1 such that the following diagram
commutes

Y
f //

|Fi|
��

X

φi
��

P1 T 7→T 2
// P1

Each φi has exactly two double fibers; all other fibers are reduced. Let Ci and C̃i denote
the classes of the reduced parts of the nonreduced fibers of φi. Additionally, for all Gi there

exists a map ψi : X → P1 with the analogous properties; we write Di and D̃i for the classes

of the reduced parts of the nonreduced fibers of ψi. After possibly interchanging Di and D̃i,
we may assume that

Ci +Di = C̃j + D̃j, 2(Ci− C̃i) = 2(Di− D̃i) = 0, f ∗Ci = f ∗C̃i = Fi, and f ∗Di = f ∗D̃i = Gi

for all i and j.

Exercise 5.12. Prove that for all i 6= j

F 2
i = G2

i = 0, Fi ·Gj = Fi · Fj = Gi ·Gj = 2, and Fi ·Gi = 4.

Then use the projection formula [Liu02, p. 399] to deduce that for all i 6= j

C2
i = D2

i = 0, Ci ·Dj = Ci · Cj = Di ·Dj = 1, and Ci ·Di = 2.

�

These intersection numbers show that the sublattice of PicY generated by G1, F1, . . . , F14

has rank 15 and discriminant 217. Further, the sublattice of NumX generated byD1, C1, . . . , C9

has rank 10 and discriminant 4. However, NumX is an even unimodular lattice of rank 10,
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so 〈D1, C1, . . . , C9〉 is a proper lattice. A computation shows that there are exactly two even
unimodular lattices in NumX ⊗Q that contain 〈D1, C1, . . . , C9〉, namely

L1 :=

〈
(D1 + C2 + · · ·+ C9)

2
, C1, . . . , C9

〉
, and L2 :=

〈
(C1 + C2 + · · ·+ C9)

2
, D1, . . . , C9

〉
.

The action of the absolute Galois group GQ on these curve classes is described in [VAV11,
Table A.2]. We note that the action factors through a 2-group, so H1(GQ, Li) is a 2 group.
Equipped with this table, we can compute that for i = 1, 2

H1(GQ, Li)[2] ∼=
(Li/2Li)

GQ

L
GQ
i /2L

GQ
i

= 0.

Thus, regardless of whether NumX = L1 or L2, H1(GQ,NumX) = 0.
Recall that PicX fits into an exact sequence

0 −→ 〈KX〉 −→ PicX −→ NumX −→ 0.

Since H1(GQ,NumX) = 0, the long exact sequence from cohomology yields a surjective map
H1(GQ, 〈KX〉)→ H1(GQ,PicX). By [Sko01, Thm. 6.1.2], we have

X(AQ)Br1 = X(AQ)im H1(GQ,〈KX〉) =
⋃

[τ ]∈H1(GQ,〈KX〉)

f τ (Y τ (AQ)) .

By Proposition 5.2, Y (AQ) 6= ∅, hence X(AQ)Br1 6= ∅, as desired.

5.4. Transcendental Brauer elements. In this section we will sketch a proof of the fol-
lowing result.

Theorem 5.13 ([BBM+]). We have BrX = Br1X, in particular X(Ak)
Br = X(Ak)

Br1.

5.4.1. General results. Let S be a smooth proper k-rational surface and let π : Y → S be a
smooth proper double cover. We will explain how π can be leveraged to understand certain
Brauer classes on Y . Combining (2.3) with the functoriality of the Brauer group, we obtain
the following commutative diagram with exact rows.

0 // (BrY )[2] // (Br k(Y ))[2]
(∂V )

//
⊕

V ∈Y (1) H1(κ(V ), 1
2
Z/Z)

0 // (BrS)[2] //

π∗

OO

(Br k(S))[2]
(∂V )
//

π∗

OO

⊕
V ′∈S(1) H1(κ(V ′), 1

2
Z/Z)

π∗

OO

We make two important observations:

• S is k-rational so BrS = Br0 S, and
• k(Y )/k(S) is a cyclic extension so ker π∗ = Br k(Y )/k(S) is completely understood

(see (2.2)).

Proposition 5.14. Let B denote the branch locus of π and let Z1, . . . , Zn be a basis for
PicS with Zi 6= B for all i. Assume that B is geometrically integral. If α ∈ Br k(S) such
that π∗α ∈ BrY , then there exists a β ∈ Br k(S) such that ∂V ′(β) = 0 for all V ′ 6= Zi, B and
π∗β = π∗α.
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Sketch of proof. By the above commutative diagram, for any V ′ ∈ S(1) and any irreducible
component V ⊂ π−1(V ′), we have

∂V (π∗α) = π∗∂V ′(α).

Since π∗α ∈ BrY , we must have that π∗∂V ′(α) = 0 for all V ′ ∈ S(1). Further, if V ′ 6= B then
the kernel of

κ(V ′)×

κ(V ′)×2
∼= H1

(
κ(V ′),

1

2
Z/Z

)
π∗−→ H1

(
κ(V ),

1

2
Z/Z

)
∼=

κ(V )×

κ(V )×2

is generated by [g|V ′ ], where g ∈ k(S)× is such that
√
g generates the extension k(Y )/k(S)

and vV ′(g) = 0. In particular, if V ′ 6= B, then there is a unique nontrivial element in the
kernel of π∗.

Let D be the union of all curves V ′ ∈ S(1) such that ∂V ′(α) 6= 0. Then there exist integers
m1, . . . ,mn and a function f ∈ k(S)× such that

div(f) = D −m1Z1 − . . .mnZn.

Then the quaternion algebra α′ := (g, f) is such that ∂V ′(α
′) 6= 0 for all components V ′ of

D and ∂V ′(α
′) = 0 for all V ′ 6= Zi, B and V ′ not contained in D. In addition, since g is a

square in k(Y )×, α′ ∈ kerπ∗ and in particular ∂V ′(α
′) ∈ kerπ∗. Hence ∂V ′(α

′) = ∂V ′(α) for
all V ′ 6= B,Zi. Thus β := α− α′ has the desired properties. �

Remark 5.15. Proposition 5.14 is sharp in the sense that we cannot enlarge the set of
V ′ ∈ Y (1) for which ∂V ′(α) = ∂V ′(β). For instance, the classification of rational surfaces
implies that there is a choice of Z1, . . . , Zn such that S \ (Z1 ∪ · · · ∪Zn) ∼= A2 so BrS \ (Z1 ∪
· · · ∪ Zn) = Br0 S.

This proposition implies that if we care only about the unramified classes in the image of
π∗, we may restrict to considering elements of BrUS, where US := S \ (B ∪ Z1 ∪ · · · ∪ Zn).
Then we may use similar arguments to characterize the elements α ∈ BrUS such that
π∗α ∈ Br0 Y or such that π∗ ∈ Br1 Y .

Proposition 5.16 ([IOOV, Thm. 1.3] for Br1 Y and [BBM+, Prop. 2.8] for Br0 Y ). If
α ∈ BrUS is such that π∗α ∈ ker(Br k(Y ) → Br k(Y )), then there exists a divisor D ⊂
Xsep \ π−1(B), integers m1, . . . ,mn, and a function f ∈ k(Sksep)× such that ∂B(α) = [f |B]
and

div(f) = π∗(D)−m1Z1 − . . .mnZn.

If π∗α ∈ Br0 Y , then we may further assume that D ⊂ X \ π−1(B) and f ∈ k(S)×.

Building on ideas from [CV14a], given any function ` on B contained in the subgroup

k(B)E := {` ∈ k(B) : div(`) mod 2 ∈ 〈Z1|B, Z2|B, . . . , Zn|B ⊂ Div(B)/2 Div(B)〉} ,
we may construct a central simple algebra α` such that α` ∈ BrUS and ∂B(α`) = [`] [BBM+,
§2.2]. Further, this construction induces a homomorphism

β :
k(B)×E

k×k(B)×2
−→ BrY

Br0 Y
, [`] 7→ π∗α`.

Proposition 5.16 characterizes the kernel of β and β−1(Br1 Y ) (see [BBM+, Thms. 2.1 and
2.2] for precise statements). Additionally, if k is separably closed, then by [CV14a, Thm. I]
β surjects onto (BrY )[2].
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5.4.2. Brauer classes on Y . Recall that there is a 2-to-1 morphism π : Y → S, where S is
the del Pezzo surface given by

xy + 5z2 − s2 = x2 + 3xy + 2y2 − s2 + 5t2 = 0.

As S is rational over K0 := Q(
√

5, i,
√
−2 + 2

√
2), we may apply the results of the previous

section. The branch curve of π is a smooth genus 5 curve given by V (12x2+111y2+13z2) ⊂ S.

Note that π−1(B)red
∼= B is fixed by σ; write B̃ for the quotient B/σ. The curve B̃ is a

(geometrically) hyperelliptic genus 3 curve.

Let K1/K0 be the splitting field of the Weierstrass points of B̃ and let Z1, . . . , Z6 ⊂ S be
rational curves defined over K0 that generate PicS and such that U := S \ (Z1 ∪ · · · ∪Z6) ∼=
A2.3 We claim that the following facts hold:

(1) Br1 π
−1(UK1)/BrK1 is generated by classes of the form β(`) for ` ∈ k(B̃K1) such that

div(`) ∈ 2 Div(B̃) [BBM+, Thm. 2.2],
(2) Over K1, β is injective [BBM+, §5, Appendix A],

(3) There exists an element ˜̀ ∈ k(B̃K1) such that div(˜̀) ∈ 2 Div(B̃) and β(˜̀) ⊗K1 Q
generates f ∗ BrX [BBM+, Prop. 4.1], and

(4) For all ` ∈ (k(B̃K1)E/K
×
1 k(B)×2)Gal(K1/K0) such that div(`) ∈ 2 Div(B̃), β(`) ⊗K1 Q

does not generate f ∗ BrX [BBM+, §5, Appendix A].

5.4.3. Sketch of proof of Theorem 5.13. Using a criterion of Beauville [Bea09], Várilly-
Alvarado and I computed that the map f ∗ : BrX → BrY is injective. Thus if BrX 6= Br1X,
then there exists an element αY ∈ BrY such that αY ⊗k Q generates f ∗ BrX. Thus, we can
reduce to working on the K3 surface Y .

Let K1, K0 and U be as above. Assume that there exists an αY ∈ BrY such that αY ⊗QQ

generates f ∗ BrX. Then αY ∈
(

Br(π−1(UK1
))

Br0(π−1(UK1
))

)Gal(K1/K0)

. Since αY ⊗Q Q generates f ∗ BrX,

by (3) there exists a ˜̀∈ k(B̃K1) with div(˜̀) ∈ 2 Div(B̃) such that αY ⊗Q Q = β(˜̀)⊗K1 Q or

equivalently such that αY −β(˜̀) ∈ Br1 π
−1(UK1). Then by (1), αY = β(`) for some ` ∈ k(B̃)

such that div(`) ∈ 2 Div(B̃). Further, since αY is fixed by Gal(K1/K0), ` must be fixed by
Gal(K1/K0) modulo (ker β)K×1 k(B)×2. This gives a contradiction by (2) and (4).

6. Project descriptions

I have tried to come up with projects that are exploratory in nature. In complete generality,
many of these projects may be very ambitious. But I believe these problems are already
interesting in some examples, so I encourage you to start there! For each project, I have
listed some suggested references, as well as my best guess of what sorts of tools will be useful.
However, I have not solved these problems, so I do not actually know what will be used!

6.1. Double covers of surfaces and 2-torsion Brauer classes. Let π : X → S be a
smooth double cover of a rational geometrically ruled surface. If k is separably closed and
has characteristic different from 2, the pullback map π∗ : Br k(S) → Br k(X) surjects onto
the subgroup BrX[2] [CV14a]. Since every non-constant Brauer class on S is ramified
somewhere, this means that we may study unramified 2-torsion Brauer classes on X by
studying ramified Brauer classes on S, which is generally easier. The proof relies heavily

3Such a choice of curves exist, see [BBM+, §3]
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on the separably closed hypothesis. If the ground field is not separably closed, does imπ∗

still contain BrX[2]? Theorem 2.2 in [BBM+] shows that the 2-torsion of algebraic Brauer
group of an open set in X is contained in the image of π∗ modulo some assumptions. Are
the assumptions necessary? Can the result be extended to all of X?

Kresch and Tschinkel have computed the Brauer group of certain diagonal degree 2 del
Pezzo surfaces [KT04]. Since any degree 2 del Pezzo surface is a double cover of P2, you
could play with some examples from this paper.
Suggested references: [BBM+, Sko,CV14a,KT04]
Preferable background: Galois cohomology, Picard groups, cyclic covers, residue maps

6.2. Relationship between BrY and BrY τ where Y τ is a twist of Y . If k is a global
field, then the étale-Brauer set of X is

X(Ak)
et,Br :=

⋂
G finite étale
f : Y→X,

a G−torsor

⋃
[τ ]∈H1(k,G)

f τ (Y τ (Ak)
BrY τ ).

To aid in computation of X(Ak)
et,Br, it would be desirable to determine the strongest possible

relationship between BrY and BrY τ . You might start with considering the algebraic Brauer
group and trying to understand how the action of Gk on PicY differs from the action of Gk

on PicY
τ
. Perhaps if p is coprime to the order of G, then Br1 Y [p] ∼= Br1 Y

τ [p]?
Suggested references: [Sko01,Poo14, Ier10]
Preferable background: Twists, étale cohomology, Galois cohomology

6.3. Central simple algebra representatives for p-torsion transcendental Brauer
classes with p > 2. Let k be a separably closed field of characteristic different from p, let
π : X → P2 be a p-cyclic cover over k, and let C be the branch curve of π. Then there is
an action of Z[ζ] on BrX and BrX[1− ζ] ⊂ imπ∗ : BrU → Br k(X), where U is the open
set of P2 obtained by removing B and a fixed line L [IOOV]. Furthermore, the elements
of (BrU)[p] are characterized by their residues on C. Thus, if one can construct central
simple algebras over k(P2), unramified on U and with prescribed residue at C, then one can
construct representatives for the (1− ζ)-torsion in BrX.

Let P ∈ L\(B∩L), let S ′ = BlP (S), and let X ′ = Blπ−1(P )(X). Then S ′ is a ruled surface,
with the ruling induced by the projection map P2 \P → P1

T , and there exists a double cover
morphism f ′ : X ′ → S ′ whose branch locus is the strict transform of B. The generic fiber of
the composition X ′ → S ′ → P1 is a curve C, with a model of the form y2 = cf(x), where
f is a monic polynomial over k(T ) and c ∈ k(T )×2. Then the results and proofs of [CV14a]
show that for any ` ∈ k(B)×, in the case p = 2,

A` := Cork(B)/k(T ) ((x− α, `)2) ∈ BrP2 \ (B ∪ L).

Further, if p = 2 then ∂B(A`) = [`] [BBM+, Lemma 2.3].
For p > 2, does there exist an integer 1 ≤ i ≤ p− 1 such that

A` := Cork(B)/k(T )

(
(x− α, `i)2

)
∈ BrP2 \ (B ∪ L)

and ∂B(A`) = [`]?
If so, then algebras of the form π∗A` would generate the (1 − ζ)-torsion of BrX. If this

does hold, then one could try to generalize [BBM+, §2] to p-cyclic covers of P2.
Suggested references: [CV14a, IOOV,BBM+]
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Preferable background: Blow-ups, Picard groups of rational surfaces, Computation of
residues

6.4. The cokernel of Br1X → H1(Gk,PicX). By the Hochschild-Serre spectral sequence,
we have an exact sequence

Br1X → H1(Gk,PicX)→ H3(Gk,Gm).

If k is a global field, then H3(Gk,Gm) = 0 so every element of H1(Gk,PicX) lifts to an
algebraic Brauer class on X. If k is an arbitrary field, this may no longer hold. For example,
Uematsu showed that if k = Q(ζ3, a, b, c) where a, b, c are independent transcendentals, and
X is a cubic surface, then the map H1(Gk,PicX)→ H3(k,Gm) can be nonzero [Uem14].

Let X be a del Pezzo surface of degree 4, i.e., a smooth intersection of 2 quadrics in P4.
We may associate to X a pencil of quadrics V → P1. A general fiber of V is rank 5; there
is a reduced degree 5 subscheme S ⊂ P1 where the quadrics have rank strictly less than
5. There are necessary and sufficient conditions in terms of these quadrics of lower rank
for the existence of a nontrivial element of H1(Gk,PicX) [VAV14]. If, in addition, certain
degenerate quadrics have a rational point (over their field of definition), then there is a
construction which lifts a nontrivial element of H1(Gk,PicX) to an algebraic Brauer class
on X [VAV14].

This raises the question of whether this condition of having a rational point is neces-
sary, i.e., does there exist a field k and a degree 4 del Pezzo surface over k with the map
H1(Gk,PicX)→ H3(k,Gm) nontrivial?

The map H1(Gk,PicX)→ H3(Gk,Gm) is the composition of two boundary maps:

(1) the map H1(Gk,PicX)→ H2(Gk,k(X)×/k
×

) coming from the short exact sequence

0→ k(X)×/k
× → DivX → PicX → 0,

and
(2) the map H2(Gk,k(X)×/k

×
)→ H3(Gk, k

×
) coming from the short exact sequence

0→ k
× → k(X)× → k(X)×/k× → 0.

If all rank 4 quadrics in the pencil have a k-point, then the first boundary map H1(Gk,PicX)→
H2(Gk,k(X)×/k

×
) is identically 0. If the rank 4 quadrics fail to have a k-point, then it is at

least not obvious that the first boundary map is 0.
Suggested references: [VAV14,Uem14]
Preferable background: Galois cohomology, (some) geometry of pencils of quadrics

6.5. Brauer groups of del Pezzo surfaces. LetX be a del Pezzo surface over a global field
k. Since X is geometrically rational, BrX = Br1X. Additionally, there are finitely many
possibilities for Br1X/Br k [Cor07, Thm. 4.1]. If we fix the degree of X and assume that X is
minimal, i.e., there are no Galois invariant subsets of pairwise skew (−1)-curves, what are the
possibilities for Br1X/Br k? Alternatively (or in addition!), for each possible isomorphism
class of Br1X/Br k, you could construct a del Pezzo surface X that has that particular
Brauer group. For instance, you could try to construct a del Pezzo surface (necessarily of
degree 1), with an order 5 Brauer class?
Suggested references: [VA13,VA08,Cor07,Car11]
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Preferable background: Galois cohomology, blow-ups, del Pezzo surfaces, (maybe) root
systems

6.6. 2-torsion transcendental classes on diagonal quartics. Let k be a field of char-
acteristic different from 2 and let X ⊂ P3 be a diagonal quartic surface, i.e., X is given
by

ax4 + by4 + cz4 + dw4 = 0

for some a, b, c, d ∈ k×. Note thatX is a double cover of a del Pezzo surface of degree 2 (in four
different ways in fact). For instance, consider X → V (ax4 + by4 + cz4 + dw2) ⊂ P(2, 1, 1, 1).
Using this double cover structure, Skorobogatov proved that BrX has a Galois invariant
element of order 2 [Sko, Prop. 3.6]. Skorobogatov asks:

(1) When does the image of the natural map BrX → BrX contain an element of order
2?

(2) What is the full Galois action on (BrX)[2]

Evis Ieronymou studied the arithmetic of X/Q(i, 4
√

2) in the case that a = d = −b = −c = 1.
In doing so, he computed representatives for (BrX)[2] [Ier10, Thm. 3.11]. He uses this to
study the Brauer group of X over certain number fields [Ier10, §§4,5]. He proves that if
2 6∈ 〈−1, 4, b/a, c/a, d/a〉 ⊂ Q×/Q×4, then (BrX)[2] → BrX is the 0 map. If 2 is in this
subgroup, then the above questions are not answered. The methods of [BBM+] should give
at least partial answers to the above questions.

Remark 6.1. The odd torsion is completely understood [IS15, ISZ11].

Suggested references: [Sko, Ier10,BBM+]
Preferable background: Computation of residues, Picard groups of K3 surfaces and del
Pezzo surfaces.
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(French). MR1104699 (92j:14027) ↑14

[CTPS] Jean-Louis Colliot-Thélène, Ambrus Pál, and Alexei N. Skorobogatov, Pathologies of the
Brauer-Manin obstruction. ↑11, 13

[CTS80] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles,
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