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Classical Iterative Re-Weighting: A mainstay of statistical

computing
e (1-Regression
min [[Ax+blly =D |Aix+ bi|

i=1
where A; is the ith row of A.
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Classical Iterative Re-Weighting: A mainstay of statistical

computing
e (1-Regression
min [|Ax + b]|; := ; JAix + bil

where A; is the ith row of A.
e Iterative Least Squares Approach

Having x* approximate ||Ax + b||; by

m

Aix + by 2 |Aix + b2
Ax+blly = JAix + b =
1A+ blly ;' x+bj Z|Ax+b\ Z|Axk+b\

Solve the linear least squares problem in the approximation for x**1 and iterate.
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Classical Iterative Re-Weighting: A mainstay of statistical

computing
e (1-Regression

m
in ||Ax + b||; := Aix + b;
;2]'151“ x + bl z;| ix+bi|
i—
where A; is the ith row of A.
e Iterative Least Squares Approach
Having x* approximate ||Ax + b||; by

m

Aix + by 2 |Aix + b2
Ax+blly = JAix + b =
1A+ blly ;' x+bj Z|Ax+b\ Z|Axk+b\

Solve the linear least squares problem in the approximation for x**1 and iterate.
e Modified e-Approximate Weighted Least Squares
m
A + bll, ~ 3 wlx, )| Ax + b2
i=1

where w(x¥, k) := 1/\/|AiXk + bif? + ()2
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Classical Iterative Re-Weighting

Lawson 1961

Rice and Usow 1968
Karlovitz 1970

Kahng 1972

Fletcher, Grant and Hebden 1972
Schlossmacker 1973
Beaton and Tukey 1974
Wolke and Schwetlick 1988
O’Leary 1990

Burrus and Burreto 1992
Vargas and Burrus 1999
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The Exact Penalty Subproblem

/
1
: T T : ) G
min Jo(x) =g x+ 5% Hx + E_l disty (Aix + b; | G ),

gceR" HeST, Ac R™*" bec R™, and C; C R™ are non-empty closed
convex, and

dist2(yi| ;) := inf [lyi — zill = llvi = Pci(yi)ll2

Pc, is the projection onto C;.
Examples:

e Equality: G := {0}

@ Inequality: C; := (—o0,0]

o Inequality: G = [I;, uj]

o (-ball: |yl <7, 1=1,2,00

@ Trust region: X = {x | ||x|/ <7},/=1,2,00
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NLP and Exact Penalties

e Nonlinear Programming (NLP):

minimize f(x)
subject to F(x) € C and x € X

-f:R" = Rand F : R" — R™ smooth

- X CR"and C C R™ non-empty, closed, and convex

-C = Cl X C2 X+ X C/, F(X) = (Fl(X) F2(X) F/(X))
Fi(x)e G, F:R"—=R™ (C eR™

e Exact penalty formulation:

Given o > 0

min f(x) + aZdiSt2(Fi(X)|Ci)

xeX .
=1
Local direction finding approximation
1 I
)r(nei)rg Jo(x) == g x+ EXTHX + Z; disty (Aix + b; | G;),
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e-Approximate Re-Weighted Least Squares

Let P¢,(y) € G be the projection of y onto G, i.e.

ly = Pai(y)ll, = dist2 (y | G)-
At (x*, €k) approximate disty (Aix + b; | G;) = ||Aix + bj — Pc,(Aix + b;)||, by
disty (Aix + by | G )?

disty (Aix + b; | G) =~
\/distz (Aixk + b | G ) + (k)2
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e-Approximate Re-Weighted Least Squares

Let P¢,(y) € G be the projection of y onto G, i.e.

ly = Pai(y)ll, = dist2 (y | G)-
At (x*, €k) approximate disty (Aix + b; | G;) = ||Aix + bj — Pc,(Aix + b;)||, by
disty (Aix + by | G )?

disty (Aix + b; | G) =~
\/distz (Aixk + b | G ) + (k)2

_ [lAix + b = Pe(Aix + b))
\/dist2 (Aixk+ b | G) + (ek)2
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e-Approximate Re-Weighted Least Squares

Let P¢,(y) € G be the projection of y onto G, i.e.

ly = Pai(y)ll, = dist2 (y | G)-
At (x*, €k) approximate disty (Aix + b; | G;) = ||Aix + bj — Pc,(Aix + b;)||, by
disty (Aix + by | G )?

disty (Aix + b; | G) =~
\/distz (Aixk + b | G ) + (k)2

_ [lAix + b = Pe(Aix + b))
\/dist2 (Aixk+ b | G) + (ek)2

B ||A,-x + bj — Pc(Aixk + b,)Hi
\/diStg (Aixk + b; | Ci)2 + (F)?

i

)
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The full approximation

/
1 .
Jo(x) =gTx+ EXTHX + E disto (Aix + bi | G;)

i=1

1 1¢
~ g x4 oxTHk 53 wilxk, ) [[Aix + b — P (At + )5

i=1

where

wi(xK, €) = 1/\/dist§(A,-xk + bi|C) + (eh)2.

Iteratively Re-weighted Least Squares



The full approximation

/
1 .
Jo(x) =gTx+ EXTHX + E disto (Aix + bi | G;)

i=1

1 1¢
~ g x4 oxTHk 53 wilxk, ) [[Aix + b — P (At + )5

i=1

where

wi(xK, €) = 1/\/dist§(A,-xk + bi|C) + (eh)2.

For simplicity, we drop the term g7 x + xT Hx from future consideration.
This can be done with (almost) no loss in generality.
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The lterative Re-Weighting Algorithm (IRWA)

IRWA:

X argmineex 3 iy wilx, €k) [|Aix + bi — Pe (Aix* + bi)||§

with X — 0.
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The lterative Re-Weighting Algorithm (IRWA)

IRWA:

X argmineex 3 iy wilx, €k) [|Aix + bi — Pe (Aix* + bi)||§

with X — 0.

@ Initialize x°, €, M,v >0, n,0,0’ € (0,1).

@ Solve the re-weighted subproblem for x<*1.

=) Set q’k — A,-(Xk+1 —Xk) If
||q,k||2 < M|:dlSt§ (AiXk + bi | CI) + (Ef()2i| +y7 Vi= 17' (RN /,
k+1 : k

choose e¥*1 € (0, nek]; otherwise, set ¢ = k.

Q If ||x**1 —x¥||, < o and ||¢¥||, < o', stop; else k := k+ 1 and go to Step 2.
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Convergence

Let (x%,€%) € X x R;. Suppose that the sequence {(x*, e¥)}32, is generated by
IRWA with 0 = 0/ = 0. Let

S = {k |ek+1 §nek} .
If either ker(A) = {0} or X =R", then any cluster point X of the subsequence

{x¥}kes satisfies
0 € (%) + N (%] X).

If it is assumed that ker(A) = {0}, then x¥ — x* the unique global solution, and
in at most O(1/£?) iterations, x* is an c-optimal solution, i.e.

Jo(Xk) < x”e]f( Jo(X) + €.
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Support Vector Machine Experiment

Consider the exact penalty form of the /;-SVM problem:

m

min 1—vy; nyﬁj + X8l
peRn 4 =

=

+

where {(x;, y;)}™, are the training data points with x; € R" and y; € {—1,1} for
each i=1,...,m, and X\ is the penalty parameter.
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Support Vector Machine Experiment

Consider the exact penalty form of the /;-SVM problem:

m

n

fmin, L=y | Y xiB + A8y
i=1 j=1 N

where {(x;, y;)}™, are the training data points with x; € R" and y; € {—1,1} for

each i=1,...,m, and X\ is the penalty parameter.

For purposes of numerical comparison, we randomly generate 40 problems where
X ranges from a 200 x 240 matrix to a 1000 x 1500 matrix where the sparsity of
the “true” solution is always 20% of the number of columns. We compare the
performance of IRWA with an ADMM implementation whose parameters are
pre-optimized for performance on this data set. The least-squares subproblems for
both methods are solved using the same CG solver. The effort is measured in
terms of the number of CG solves.
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L - IRWA Numerical Comparison: Number of CGs

With Nesterov acceleration.
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Figure : In all 40 problems, IRWA obtains smaller objective function values with fewer
CG steps.
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ADAL - IRWA Comparison: Number of False Positives

ADAL IRWA

1500

10
I

1000

err

| iR

1e-05 le-04 0.001 1le-05 le-04 0.001

500
L

Figure : For both thresholds 10™* and 107°, IRWA yields fewer false positives in terms
of the numbers of “zero” values computed. The numbers of false positives is similar for
the threshold 1073, At the threshold 107>, the difference in recovery is dramatic with
IRWA always having fewer than 14 false positives while ADAL has a median of about
1000 false positives.
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Least-Squares and Sums of Convex Functions

14
min ¢(x) := f(Ax + b) = > fi(Aix + b))
i=1
Goals

@ Minimize ¢ based on properties of the individual f; only with minimal linkage
between the f;'s (splitting). For example, apply Prox to the individual f;'s,
but not to the function ¢ as a whole.

@ The A;'s only enter through weighted least-squares:

Y4
1 2
min EZ;W:'(X, p) [[Aix + bi — si(p)][5 s

where p € Eq is a parameter vector and s : Eg — W.
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Least-Squares and Sums of Convex Functions

¢
min ¢(x) := f(Ax + b) = > fi(Aix + b))
i=1
Goals
@ Minimize ¢ based on properties of the individual f; only with minimal linkage
between the f;'s (splitting). For example, apply Prox to the individual f;'s,
but not to the function ¢ as a whole.

@ The A;'s only enter through weighted least-squares:

Y4
1 2
min EZ;W:'(X, p) [[Aix + bi — si(p)][5 s

where p € Eq is a parameter vector and s : Eg — W.

The procedures we consider are iterative with x¢ and y© := Ax® 4 b representing
the current best approximate solutions, and N(c¢) is the number of iterations to
obtain x¢.
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Separate the Roles of the f’s and the A;’s

min ¢(x) := f(Ax + b) = > f(Aix+ by)

i=1

4
min > i)
i=1

st. ye b+ RanA
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Separate the Roles of the f’s and the A;’s

min ¢(x) := f(Ax + b) = > f(Aix+ by)

i=1

4
min > i)
i=1

st. ye b+ RanA

1

2
5z yI;

Prox., ry := argmin, [f,-(z) +
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Least-Squares Based Algorithms

Projected Subgradient:

R
mmfleA(x V+tigfl2,  gf € Of(y), tf = —r—, O(1/€2) e

L\/N(c)’
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Least-Squares Based Algorithms

Projected Subgradient:

R

mlnf Ai(x — x )+t gf |5, € Ofi(yF), tf = ———=, O(1/€) noae
Zn( S8 sf <O, = e 001/)
Projected Prox-Gradient:
U
m|n 72 |Ai(x — x) + t7 (I — Prox,, £)(Aix® + b,-)Hg7 tf = /7_1, O(1/€) ace
i=17i
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Least-Squares Based Algorithms

Projected Subgradient:

R

mlnf Ai(x — x )+t gf |5, € Ofi(yF), tf = ———=, O(1/€) noae
Zn( S8 & SOR0N). = o O
Projected Prox-Gradient:
R
m|n 72 |Ai(x — x) + t7 (I — Prox,, £)(Aix® + b,-)Hg7 tf = /7_1, O(1/€) ace
i=17i
ADAL:
‘
1 c
mln 72— l(Ai(x = x) + (I — Proxy, £)(Aix® + bj + vju )||2, O(1/€) e
i= 1

1
ul = uf + —(AixT + by — Proxy, £ (Aix€ + b + yuf)).

i
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Application to J(x,¢) = S,y /dist?(Aix + b; | G) + €2

¢
1 2
52 1Al = x) + £5(1 = Pe)(Ax + b))
i=1
Projected Subgradient for J(x,0)
dist(xo | Z) . c
f Ai bi ¢ G,
tf 1= { edist(Axctb; | G)y/N(e) if Aix“ + bi ¢ (X solution set)
0 , otherwise.
Projected gradient for J(x, ¢)
c €min
t:

e st (A + by G) + ¢
Projected Prox-Gradient for J(x,0)

—1
Y .
S ; distz (Ax“ + b | G) <

ists L(A;ixC+bi|C; . c
dlStQZ(Zijffflcj) » dista (Aix® + b | G) >
ADAL for J(x,0)

Same as projected prox-gradient but t7 :=1 and we include shifts v;uf.
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Comparison with IRWA

General Methods:

1< c 2 1
§§|’A,‘(X—Xk)+ti (I_PC,)(A,Xk+b,)||2 O(E) acc

IRWA:

1< 1

2 i=1 \/distg (Aixk+ b | G) + 612

1
| Ai(x = x¥) + (1 = P&)(Axk + b)|2 O(55)me
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Comparison with IRWA

General Methods:

V4
1 2 1
S Al =) + £ = P)AX + B[, O(2)
i=1
IRWA:
!
L 1 2 1
52 1A(x = x¥) + (1 = Pe)(Ax* + bi)[; O(5) e
i=1 \/distg (Aixk +b; | C) + €
New Improved IRWA:
2
11 . )
22 |+ (1 = Pe)(Ax* + b)
i1 € Vst (A + b; | G) + & 2
O(A)!! e
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Comparison of Projected Gradient and New IRWA

Projected gradient for J(x,¢)

2
¢
1 min
52 Al = x4+ : (1 = Po)(Axt + by)
= Vdis?(Aixk + by | G) + &
2
New Improved IRWA:
2
1 ! 1 k €j k
5 - A,'(X — X )+ (I - PCI.)(A,'X + b,)
o1 Ci \/distg (A,’Xk + b; ‘ C,') + 6,2 )
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Comparison of Projected Gradient and New IRWA

Projected gradient for J(x,¢)

2
0
1 min
52 Al = x4+ : (1 = Po)(Axt + by)
= Vdis?(Aixk + by | G) + & i
New Improved IRWA:
/ 2
1<~ 1 ;
SO0 = Al —x)+ ‘ (I — Pc)(Aix* + b;)
o1 Ci \/distg (A,’Xk + b; ‘ C,') + 6,2 )

When all €; have the same value ¢, they are the same algorithm!
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Unaccelerated versions with ¢ = 0.01.

CG Steps vs Problem Number

Objective Values vs Problem Number
110
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Figure : In all 10 problems, the old IRWA with iterative re-weighting obtains similar
objective function values with fewer CG steps.
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Accelerated versions with ¢ = 0.01.

CG Steps vs Problem Number

Objective Values vs Problem Number
10
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In all 10 problems, the old IRWA with iterative re-weighting obtains similar

Figure :
objective function values with many fewer CG steps.
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Reference

Thank you!

Iteratively Reweighted Linear Least Squares

for
Exact Penalty Subproblems on Product Sets

with F. Curtis, H. Wang and J. Wang. SIAM J. Optim. 25(2015): 261 - 294.
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The Euclidean Huber Distance to a Convex Set

C C E be non-empty closed and convex
h := dist, (- | C) the Euclidean distance to C

The Euclidean Huber distance to C is just the Moreau-Yosida envelope of the

distance to C.

e hly) — %dist%(y\C) , ifdista (v | C) <+,
K dista (y [C) =7 , ifdista(y | C) >,

Prox. a(y) — Pc(y) , ifdista (v | C) <,
Ay) = o
! Y= @it — Pely)) , ifdista(y | C) <.
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