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Stabilization via Nonsmooth, Nonconvex
Optimization

James V. Burke, Didier Henrion, Adrian S. Lewis, and Michael L. Overton

Abstract—Nonsmooth variational analysis and related compu-
tational methods are powerful tools that can be effectively applied
to identify local minimizers of nonconvex optimization problems
arising in fixed-order controller design. We support this claim
by applying nonsmooth analysis and methods to a challenging
“Belgian chocolate” stabilization problem posed in 1994: find
a stable, minimum phase, rational controller that stabilizes a
specified second-order plant. Although easily stated, this par-
ticular problem remained unsolved until 2002, when a solution
was found using an eleventh-order controller. Our computational
methods find a stabilizing third-order controller without diffi-
culty, suggesting explicit formulas for the controller and for the
closed loop system, which has only one pole with multiplicity 5.
Furthermore, our analytical techniques prove that this controller
is locally optimal in the sense that there is no nearby controller
with the same order for which the closed loop system has all its
poles further left in the complex plane. Although the focus of the
paper is stabilization, once a stabilizing controller is obtained, the
same computational techniques can be used to optimize various
measures of the closed loop system, including its complex stability
radius or H performance.

Index Terms—Fixed-order controller design, nonconvex opti-
mization, nonsmooth optimization, polynomials, stability.

I. INTRODUCTION

F IXED-ORDER control design is a challenging problem
in theory and in practice, and is considered important in

a broad context ranging from the complexity of control prob-
lems to real industrial practice. We believe that nonsmooth vari-
ational analysis and computational methods have great poten-
tial for applications in this field. Three of us are developers of
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nonsmooth analytical techniques for functions of roots of poly-
nomials and eigenvalues of matrices [11], [8] as well as com-
putational methods appropriate for nonsmooth, nonconvex op-
timization [10]. Throughout the development of this body of
work, we have been partially motivated by potential applica-
tions in control, both in theory and practice. It is only recently,
however, that, we have taken explicit steps in this direction [9],
[7]. One of the purposes of this paper is to provide a generally
accessible introduction to our techniques.

In this paper, we focus specifically on stabilization. The
most basic requirement of a controlled system is that the closed
loop system should be stable, yet the nonconvexity of the cone
of stable polynomials makes stabilization inherently difficult.
Here by a stable polynomial we mean one whose roots1 are
in the open left half of the complex plane, as is relevant for
continuous-time dynamical systems, but all our techniques
are equally well suited to discrete-time systems where the
stability region is the open unit disk. Similarly, the cone of
stable matrices is nonconvex, where by a stable matrix, we
mean one whose eigenvalues are in the open left half-plane.
Because of this nonconvexity, incorporating stability criteria
into an optimization problem, whether as part of the objective
or in the constraints, normally leads to a nonconvex, and
indeed typically also nonsmooth, optimization problem. Such
problems are often tackled by introducing Lyapunov matrix
variables, leading to a new optimization problem with bilinear
matrix inequality constraints that may, or may not, be easier
to solve than the original problem. In contrast, in our work we
tackle nonsmooth, nonconvex optimization problems arising
from stabilization objectives directly.

We believe that our techniques are quite broadly applicable.
But we also believe that it is very useful to focus on a spe-
cific, challenging example, to demonstrate the potential of the
approach. More than a decade ago, Blondel [2, p. 150] [3] of-
fered a prize of a kilogram of Belgian chocolate for the solution
of the following stabilization problem.

Problem 1.1: Let and . Find
the range of real values for for which there exist stable polyno-
mials and with such that is
stable. Equivalently, in the language of control, find the range of
real values for for which there exists a stable, minimum phase,
proper rational controller (one whose poles and zeros are in
the open left-half plane) that stabilizes the plant (for which
the closed-loop transfer function has all its poles
in the open left-half plane).

Blondel also offered a kilo of Belgian chocolate for a solution
of a special case.

1We speak of roots, not zeros, of polynomials, to avoid confusion with zeros
of a transfer function.
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Problem 1.2: Show whether or not 0.9 is in the range of
values for for which stabilization is possible.

For is not stable for any and because
is a common factor of and . Conversely, stabilization is easy
for , say. But for stabilization is surprisingly
difficult. Problem 1.2 went unsolved for eight years until Patel
et al. [13] found a solution with , using
a randomized search method.

Problem 1.1 remains unsolved. However, it follows from re-
sults in [5] that there exists a number such that stabilization
is possible for all and is not possible for . Thus,
Problem 1.1 reduces to determining . Results on the range of
analytic functions proved in [6] imply that [3],
[4], and it is known from the experiments reported in [13] that

.
In this paper, we give a solution to Problem 1.2 with far

lower degree than had previously been thought possible. Specif-
ically, we show stabilization is possible with and

for

and with and for

Furthermore, the controllers have a systematic structure that we
describe in detail. Stabilization is still possible for some ,
but becomes much more difficult as the structure of the con-
trollers changes. We still do not know the answer to Problem
1.1, but we know that .

These stabilizing controllers were obtained by application of
a new numerical method for nonsmooth, nonconvex optimiza-
tion called gradient sampling. The controllers that we found
are locally optimal in a specific sense. Although they were
found experimentally, we prove their local optimality for the
case . In particular, for the boundary case ,
we exhibit a stable cubic polynomial and scalar for which

is exactly the monomial , and for which any small
perturbation to or moves at least one root of into the
open right-half plane. Our theoretical analysis builds on recent
work on nonsmooth analysis of the cone of stable polynomials.

We believe that our work is significant not because the Bel-
gian chocolate problem is important by itself, but because the
solution of a challenging problem by new techniques suggests
that the same ideas should be useful in a far broader context
and presents an illustrative and intuitive example that can be
easily understood. Indeed, the reason that the chocolate problem
is so difficult is that for near 1, and have unstable roots
that are nearly equal to each other, or in the language of con-
trol, that an unstable pole and unstable zero of (the transfer
function of the open loop system) nearly cancel each other. Ex-
actly this phenomenon arises in physically relevant engineering
problems, such as the X-29 prototype aircraft design problem
or Klein’s bicycle design problem mentioned in [1]. It is our
hope, as was Blondel’s, that a detailed analysis of the chocolate

problem will provide insight that is useful in many other con-
texts. We note also that our techniques are not limited to polyno-
mials, and that indeed much of our work is oriented towards sta-
bilization of matrices. Furthermore, our interests are not limited
to stabilization. We are currently developing a MATLAB toolbox
for fixed-order controller design which allows specification of
various optimization objectives, including performance.

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss our computational approach to the chocolate
problem and present numerical results. In Section III, we present
our local optimality analysis, using key theoretical properties of
the cone of stable polynomials. In Section IV, we make some
concluding remarks.

II. EXPERIMENTAL ANALYSIS

Let (respectively, ) denote the space of polynomials
with complex (respectively real) coefficients and with degree
less than or equal to , and let and denote the
corresponding subsets of monic polynomials with degree . For

, let denote the abscissa of

(interpreted as if is a nonzero constant). Problem 1.2 asks
for what range of do there exist polynomials and with

such that , and Problem
1.2 addresses the case .

Now, consider the problem of choosing polynomials and
to minimize . For convenience we restrict ,

but not , to be monic. Thus, we consider the problem: For
fixed real and integers and with , minimize

over and . This is a non-
convex optimization problem in real variables.

For a given and , we say that a root of, or is an
active root if its real part equals . The objective
function is, as we shall see, typically not differentiable at local
minimizers, either because there are two or more active roots,
or because there is a multiple active root, or both. Furthermore,
it is not the case that is an ordinary “max function,” that is the
pointwise maximum of a finite number of smooth functions. On
the contrary, is not even Lipschitz because of the possibility
of multiple roots.

Reliable software for both smooth, nonconvex optimization
and for nonsmooth, convex optimization is widely available, but
there are not many options for tackling nonsmooth, nonconvex
optimization problems. We have developed a method based on
gradient sampling that is very effective in practice and for which
a local convergence theory has been established [10], [12]. This
method is intended for finding local minimizers of functions

that are continuous and for which the gradient exists and is
readily computable almost everywhere on the design parameter
space, even though the gradient may (and often does) fail to exist
at a local optimizer. Briefly, the method generates a sequence of
points in the parameter space, say , as follows. Given , the
gradient is computed at and at randomly generated points
near within a sampling diameter , and the convex combina-
tion of these gradients with smallest 2-norm, say , is computed
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Fig. 1. Optimal roots for deg(x) = 3, plotted in the complex plane for various values of �. Crosses and plus signs are, respectively, roots of ax+ by and x when
the abscissa �(x(ax+ by)) is minimized over monic cubic x and scalar y. Circles and diamonds are, respectively, roots of ax + by and x when stabilization is
achieved and the stability radius min(�(x); �(ax + by)) is maximized. The third panel shows that Problem 1.2 is solved by an order 3 controller.

by solving a quadratic program. One should view as a kind of
stabilized steepest descent direction. A line search is then used
to obtain , with , for
some . If is below a prescribed tolerance, or a pre-
scribed iteration limit is exceeded, the sampling diameter is
reduced by a prescribed factor, and the process is repeated. For
the numerical examples to be discussed, we used sampling di-
ameters , with a maximum of 100 iterates per
sampling diameter and a tolerance for , and we set the
number of randomly generated sample points to (twice the
number of design variables) per iterate. Besides its simplicity
and wide applicability, a particularly appealing feature of the
gradient sampling algorithm is that it provides approximate “op-
timality certificates”: being small for a small sampling di-
ameter suggests that a local minimizer has been approximated.
A MATLAB implementation of the gradient sampling algorithm
is freely available.2

The abscissa of a polynomial is the spectral abscissa (largest
of the real parts of the eigenvalues) of its companion matrix,
and so is the spectral abscissa of a block di-
agonal matrix, with blocks that are companion matrices for
and respectively. Computing the gradient of the spectral
abscissa in matrix space is convenient, because the gradient of a
simple eigenvalue (with respect to the real trace inner product

is the rank-one matrix , where and
are respectively the left and right eigenvectors corresponding

to , normalized so that . The ordinary chain rule then
easily yields the gradient of the spectral abscissa with respect
to the relevant coefficients of and when it exists, which is
exactly when there is only one real eigenvalue or one conjugate
pair whose real part equals the spectral abscissa, and that eigen-
value or conjugate pair is simple. The gradient of on poly-
nomial space depends on the inner product we choose: nothing

2See http://www.cs.nyu.edu/overton/papers/gradsamp/alg/.

a priori in the problem defines our choice. For our numerical
experiments, simply for computational convenience, we define
the inner product to coincide, for monic polynomials, with the
inner product of the corresponding companion matrices.

We now summarize the numerical results that we obtained
when we applied the gradient sampling algorithm to minimize

for various values of and . We began
with and . We soon found negative optimal
values for for small values of , thus solving
Problem 1.2. Furthermore, we observed that the leading coeffi-
cient of the non-monic polynomial converged to zero as the
apparent local optimizer was approached. This led to numer-
ical difficulties since constructing a companion matrix requires
normalizing the polynomial to be monic; hence, the norm of
the companion matrix blows up as the leading coefficient of the
polynomial goes to zero. These difficulties were avoided by ex-
plicitly reducing , the degree of and the size of its corre-
sponding companion matrix block, when it was realized that
the leading coefficient was converging to zero, restarting the
optimization in a smaller parameter space. This phenomenon
was observed again for smaller values of , and we soon be-
came quite confident that, for and , the function

is minimized when , that is, the polyno-
mial is a scalar, so . Further
experimentation showed that could be reduced
to a negative value when , but not when

. Furthermore, the structure of the minimizer is striking:
the polynomial evidently has only one (distinct) root,
which, for , is a quintuple root (multiplicity 5), since is
quadratic. This is the only active root; the roots of have smaller
real part. The structure is clearly seen in the third panel of Fig. 1,
where the roots of the polynomials and obtained by
minimizing are shown as crosses and plus signs
respectively; disregard the circles and diamonds in the plot for
the moment. The five roots of are very close to each
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other, indicating the likelihood of coalescence to a single root
for the exact local optimizer, while the three roots of are well
to their left. The other panels in the same figure show similar
results for ranging from 0.875 to 0.9375 (still with and

). In all six cases, the approximately optimal has
a nearly multiple (quintuple) root, but for the two largest values
of , this root is to the right of the imaginary axis, causing a
change in the automatic scaling of the horizontal axes in the last
two panels, and indicating that stabilization was not achieved.
For , the approximately optimal abscissa was attained
by and

This was the best result found in 100 runs of the gradient
sampling algorithm starting from randomly generated starting
points.

The appearance of the multiple root at a local optimizer is a
very interesting phenomenon that we discuss further in the next
section. However, it is well known that the roots of a polyno-
mial with a nominally stable multiple root are highly sensitive
to perturbation and, therefore, such a polynomial has poor sta-
bility properties in a practical setting. For this reason, we also
consider a more robust measure than the abscissa, namely the
complex stability radius of a monic polynomial in

for all with

Here, the norm is just the 2-norm of the coefficient vector.
The quantity can be computed by standard software.3

It is the reciprocal of the norm for the state–space
realization , where and are re-
spectively the companion matrix for (with its negated
coefficients in the first column), the identity matrix, the
first row of the identity matrix, and a zero row, since then

. Like the abscissa,
the complex stability radius is differentiable almost everywhere
and its gradient is easily computed [9].

When , a natural maximization objective is

We applied the gradient sampling algorithm to minimize
over and , using the same

values for and as earlier. A key point is that the complex
stability radius is identically zero in a small neighborhood of
any polynomial with a root in the open right half-plane. We
therefore used the locally optimal and found by minimizing

(as already described above) to initialize minimization of
over the same parameter space. This optimization produced
locally optimal and for which the roots of are
well separated; for and , the roots of the optimal

and are shown as circles and diamonds respectively
in the first four panels of Fig. 1. For the two largest values of ,
stabilization was not achieved, so optimization of the stability
radius could not be initialized.

3We used the norm function in the MATLAB Control System Toolbox.

In order to achieve stabilization for larger values of , we
increased to . Results are shown in Fig. 2: The
optimal is again a scalar, and for all for which stabilization
is achieved, the optimal apparently has only one root,
which is hextuple (multiplicity 6), with the roots of inactive.
We were able to achieve stabilization up to , for
which the approximately optimal abscissa was attained by

and

As in Fig. 1, the circles and diamonds in the first four panels of
Fig. 2 show the roots of the optimal and when the com-
plex stability radius is optimized instead of the abscissa; these
roots are well separated. As increases, a complex conjugate
pair of roots of moves to the right, and we see that this pair
becomes active, having the same real part as the hextuple root
of , at approximately the same critical value of beyond
which stabilization is not possible. In other words, the trajecto-
ries of the rightmost conjugate pair of roots of the optimizing
and hextuple root of the corresponding as a function of

reach the imaginary axis at approximately the same value of
(approximately 0.95). In fact, as discussed at the end of Sec-

tion III-B, these events occur at exactly the same critical value
. Beyond this value the structure of the local op-

timizer changes; a conjugate pair of roots of is active and the
hextuple root of splits into a quintuple root and a simple
root. This simple root of and a corresponding root of

shoot off together into the left half-plane (see the final panel
of Fig. 2, for which the automatic scaling of the horizontal axis
changes abruptly in order to fit all the roots in the panel).

In order to achieve stabilization for larger , we increased
to 4 , with still set to 0. The results

are shown in Fig. 3. The structure of the optimizers remains
consistent with the final panel of Fig. 2: A conjugate pair of
roots of is active, and , which has degree 7, has one
active hextuple root. Both and have a simple root well
into the left half-plane, causing a change in the automatic scaling
of the real axis, and the other roots all appear to be very close
to the imaginary axis as a result. Stabilization was achieved for

, but not for larger . Stabilization was possible for
somewhat larger values by further raising the degrees of both
and , for example, with and

, but the numerical optimization problem is
much more difficult than it is for smaller values of .

Figs. 4 and 5 summarize the numerical experiments, respec-
tively showing the optimal values of the abscissa
and stability radius (the latter on a log scale) as a func-
tion of , for ranging from 1 to 5 ( from 0 to 4), with

. Note the way the underlying curves are reg-
ularly spaced for , with each increment in
providing a substantial increase in the range of for which
stabilization is possible, while for , little is gained
by increasing . This is a consequence of the change in
structure of the optimal solution when increases beyond

.
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Fig. 2. Optimal roots for deg(x) = 4, plotted in the complex plane for various values of �. Crosses and plus signs are, respectively, roots of ax+ by and x when
the abscissa �(x(ax+ by)) is minimized over monic quartic x and scalar y. Circles and diamonds are, respectively, roots of ax+ by and x when stabilization is
achieved and the stability radius min(�(x); �(ax+by)) is maximized. The structure of the abscissa optimizer changes in the last panel, causing a root of ax+by

and of x to shoot off into the left half-plane.

Fig. 3. Optimal roots for deg(x) = 5, plotted in the complex plane for various values of �. Crosses and plus signs are, respectively, roots of ax + by and x

when the abscissa �(x(ax+ by)) is minimized over monic quintic x and scalar y. Stabilization is achieved only in the first panel. The structure of the optimizer
is consistent with the final panel of Fig. 3, with a root of ax + by and of x moving further into the left half-plane as � is increased.

III. THEORETICAL ANALYSIS

We now present a theoretical analysis inspired by the exper-
imental results reported in the previous section. We observed
that, for and for certain ranges of that depend on ,
local minimizers4 of on
apparently have a very special property, namely, that

4The use of a superscript � indicating the dependence of the minimizer on �

should not be confused with use of superscripts to mean exponentiation else-
where.

has only one (distinct) root. Since the polynomial is

(3.1)

we can write this observed optimality property explicitly as the
polynomial identity

(3.2)
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Fig. 4. Summary of minimized abscissa values. The pattern changes abruptly as � is increased beyond 0.95, reflecting a change in the structure of the optimizing
solution.

Fig. 5. Summary of maximized stability radius values for the cases that stabilization was achieved.

where is the root, are the coefficients of and is the
constant (and only) coefficient of . The dependence of the
coefficients and the root on is expressed explicitly, but the
dependence on is suppressed. Using the identity (3.2), it is
not difficult to derive, for , a formula for the critical
value for which and to observe that for smaller values
of , we have less than 0 and greater than the real part of any
root of . The real contribution of our analysis is a proof that,
for sufficiently near its critical value, is indeed strictly

locally optimal, which we present for (the simplest case)
and (covering the simplest solution to Problem 1.2).

In what follows we make use of the terminology subdifferen-
tial (set of subgradients), horizon subdifferential (set of horizon
subgradients) and subdifferentially regular, all standard notions
of nonsmooth analysis, as is the nonsmooth chain rule we use
later; see [14, Ch. 8] and [8].

Essential to our local optimality analysis is the following re-
sult of Burke and Overton [11, pp. 1668–1673]. The result was



1766 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 11, NOVEMBER 2006

originally stated for the abscissa map on the affine space
. However, it is more convenient to work with a related

map on the linear space , namely

(3.3)

We can identify with the Euclidean space , with the
inner product . For , we
define the polynomial by

Theorem 3.4 (Abscissa Subdifferential): The map defined
in (3.3) is everywhere subdifferentially regular. The subdiffer-
ential and horizon subdifferential at 0 are, respectively, given by

A. The Simplest Case

In the case , the polynomial (3.1) reduces to

(3.5)

writing and . Identity (3.2) reduces to

(3.6)

where we have abbreviated to . Multiplying out factors
and equating terms leads to the following result.

Lemma 3.7 (Condition for Triple Root): Identity (3.6) holds
if and only if

and solves the equation

(3.8)

The next lemma follows from the implicit function theorem.
For technical reasons associated with the nonsmooth chain rule
we use, we will in fact allow and to be complex variables.
Consequently, we may as well also allow the parameter to be
complex.

Lemma 3.9 (Definition of , Linear Case): For complex
near , the (3.8) has a unique solution near 0, de-
pending analytically on . For real near , the solution is
real, and increases strictly with , with .

Equipped with these lemmas, we can proceed to our main
result for the case .

Theorem 3.10 (Minimizing the Abscissa, Linear Case): Con-
sider the problem of choosing a monic linear polynomial and

scalar to minimize the maximum of the real parts of the roots
of the polynomial , where and

. For all complex near this problem
has a strict local minimizer at the unique pair for which

has a triple root near 0. Furthermore, is stable, and
for real, is stable if and only if .

Proof: Define as in Lemma 3.9. The unique pair
in the theorem statement is therefore given by

and , where and are given by Lemma 3.7.
Notice , so is stable and

for all near .
Consider the polynomial (3.5), and make the following

changes of variables:

With this notation, a calculation shows that minimizing
is equivalent to minimizing the abscissa of the polynomial

where the linear map is given by

We, therefore, need to prove that the point is a strict local
minimizer of the composite function , where the function

is defined by (3.3).
The adjoint map is given by

and, in particular

Notice that when we have the implication

and

Since the map depends continuously on , the same implica-
tion holds for all near . We are now in a position to apply The-
orem 3.4 (abscissa subdifferential). First, we observe the con-
straint qualification

where denotes null space. Consequently we can apply the
nonsmooth chain rule [8, Lemma 4.4] to deduce that the com-
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posite function is subdifferentially regular at zero, with
subdifferential

The matrix

depends continuously on , and, since , the vector

satisfies . Hence, by continuity, the subdifferential
contains zero in its interior. Together with subdif-

ferential regularity, this implies [8, Prop. 4.3] that the function
has a “sharp” local minimizer at zero: it grows at least

linearly at this point.
This result proves that any small perturbation to the locally

optimal polynomials or splits the triple root of
and moves at least one root strictly to the right, and into the
open right half-plane when . A simple argument based
on the Routh–Hurwitz conditions shows that stabilization by a
first-order controller is not possible when , thus providing a
global optimality certificate for our local optimizer when .

B. The Chocolate Problem

We now turn to the case , providing what is almost cer-
tainly the simplest possible solution to Problem 1.2. The poly-
nomial is now

(3.11)

The identity (3.2) becomes

(3.12)

Multiplying out factors and equating terms leads to an analogue
of Lemma 3.7 with explicit formulas for and ; for brevity,
we omit the details and proceed to the following result. The
proof uses the implicit function theorem.

Lemma 3.13 (Definition of , Cubic Case): For complex
near the equation

has a unique solution near 0, depending analytically on . For
real near , the solution is real, and increases strictly with
, with . Furthermore, there exist analytic functions of

, namely and , for which the identity (3.12)
holds. Finally, the polynomial

is stable, with

and

We now present the main result of this paper.
Theorem 3.14 (Minimizing the Abscissa, Cubic Case): Con-

sider the problem of choosing a monic cubic polynomial and a
scalar to minimize the maximum of the real parts of the roots
of the polynomial , where
and . For all complex near the value

this problem has a strict local minimizer at the
unique pair for which has a quintuple root near
0. Furthermore, is stable, and for real, is stable if
and only if .

Proof: Define as in Lemma 3.13. The unique pair
in the theorem statement is given by

and . By the lemma, the polynomial
is stable and for all near

.
Therefore, we wish to check that, for all complex close to

, choosing and gives a strict local minimum for
. To verify this, we first check the case , and

then, as in the previous section, but with fewer details, appeal to
a continuity argument.

We make the change of variables

With this notation, minimizing is equivalent to min-
imizing the abscissa of the polynomial

where

So, we wish to show that is a strict local mini-
mizer of the function . A calculation shows that the adjoint
map is given by
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We have

We now use Theorem 3.4 (abscissa subdifferential). First, we
observe the constraint qualification

Hence, the nonsmooth chain rule holds

yielding

(3.15)
A straightforward check shows the affine map from to
defined by

is invertible, and the inverse image of zero has . Conse-
quently, by (3.15), we have the condition for a sharp minimizer

A continuity argument now completes the proof.
It follows from this theorem that any small perturbation to the

locally optimal polynomials or splits the quintuple root of
and moves at least one root strictly to the right, and into

the open right half-plane when .
We now turn briefly to the case . The identity (3.2)

reduces to

(3.16)
Multiplying out factors and equating terms leads to the formula

for which . This value is slightly larger than we ob-
served numerically; given the sensitivity of the roots, it is not
surprising that the optimization method was unable to find a sta-
bilizing solution for . We verified that, as observed

in our numerical experiments, a remarkable coincidence oc-
curs: the real part of the rightmost conjugate pair of roots of

is less than zero for and equal
to zero for . Consequently, for , the structure of
the optimal solution changes. The minimizer of the abscissa of

is no longer a minimizer of the abscissa of ,
as a conjugate pair of roots of is active. In principle, one could
apply a parallel analysis to the new optimal structure for ,
but this has diminishing returns, especially as it seems likely
that the optimal structure would change further as and
(and perhaps also ) are increased further.

IV. CONCLUDING REMARKS

This paper has two messages. First, the gradient sampling
method provides a very effective way to find local minimizers
of challenging nonsmooth, nonconvex optimization problems of
the kind that frequently arise in control. Second, stability ob-
jectives and constraints can be analyzed theoretically using re-
cent results on nonsmooth analysis of the cone of stable polyno-
mials. These approaches extend to encompass other key quanti-
ties of great practical interest, such as optimization of per-
formance. We are addressing these issues in ongoing work. In
particular, we are developing a MATLAB toolbox called HIFOO
( Fixed-Order Optimization) that will allow engineers con-
venient free access to our techniques via a friendly user interface
[7].
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