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1. INTRODUCTION 

IN THIS study we consider the directional differentiability of two related functions of the 
spectrum of an analytic matrix function, Specifically, given an analytic (holomorphic) matrix- 
valued mapping A(z) from C=” to Cnx”, we are interested in the directional differentiability of 
the functions 

a(z) = max(ReA: J. E C(z)), (1) 

and 

p(z) = max(IAI: A E WI, (2) 

where C(z) is the spectrum of A(z), i.e. 

with 

C(z) = ]A: P(k z) = O], (3) 

&I, z) = det(l1 - A(z)), (4) 

the characteristic polynomial for A(z). The elements of C(z) are called eigenvalues and the 
functions CY and p are called the spectral abscissa and spectral radius maps, respectively, for the 
analytic matrix function A(z). These functions are of fundamental importance in many 
applications. Perhaps the most important of these is to the notion of stability for discrete and 
continuous dynamical systems. 

Consider the differential equation 

x = A(z)x (5) 

for a fixed choice of the parameter z E C”. Over 100 years ago, Lyapunov [l] showed that the 
solutions of this system attain a steady state (the trajectories stabilize) if and only if CY(Z) < 0. 
As a consequence of this result the matrix A(z) is said to be stable for a given value of z if 
Q(Z) < 0. Although stable matrices have been intensely studied for the past two centuries, many 
fundamental properties have yet to be completely understood and so they remain a focal point 
of modern research [2,3]. 

$ The work of the author was supported in part by National Science Foundation Grant DMS-9102059. 
11 The work of this author was supported in part by National Science Foundation Grant CCR-9101640. 
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The function p plays a similar role for the discrete system 

xk+l = Aw4 > k = 0, 1, . . . . (6) 

In this context, A(z) is said to be stable if p(z) < 1. If A(z) possesses this type of stability, then 
it is straightforward to show that the sequence (xkj converges [4]. 

A central theme in the study of stable matrices is the identification and characterization of 
those values of the design or control parameter z that yield stable solutions to the systems (5) 
and (6) [2, 3, 51. The values of the parameter z that yield stability constitute the stability region 
for A. It is the desire to locate such values for the parameter z that provides the underlying 
motivation for this paper. 

Observe that one can attempt to locate points in the stability region for A by minimizing 01 
(respectively, p). For this purpose one is naturally led to an investigation of the variational 
properties of the mappings CY and p subject to perturbations in z. The published literature on 
this subject contains very little information about these properties when the eigenvalues 
achieving the maximum value in the definition of either CY or p have multiplicity greater than 
one. When the eigenvalues are simple, i.e. they have multiplicity one, then they are 
differentiable [6, theorem 11.5.13a] and the variational properties of CY and p are easily derived 
from the theory of max functions [7, 81. If the eigenvalues achieving the max are semisimple, 
i.e. the corresponding part of the Jordan form of A(z) is diagonal (equivalently, their associated 
factors in the polynomial of minimum degree annihilating A(z) are linear), then the variational 
structure can be derived from the perturbation theory of linear operators [6, 81. Beyond these 
two cases it appears that no further variational information is available. However, in practice, 
consideration of the general case of multiple eigenvalues is of the greatest importance, since 
the minimization of either CY or p tends to cause the coalescence of eigenvalues. In the study of 
multiple eigenvalues, the most important case is not the semisimple case, but rather the 
nonderogatory case, i.e. the case where each eigenvalue corresponds to a single Jordan block 
in the Jordan form of A(z) (equivalently, its multiplicity in both the characteristic and 
minimum polynomial for A(z) is the same). In the absence of any assumption of special 
properties on the matrix such as symmetry, the nonderogatory case is generic [9]. 

In this study we consider the general case in which the eigenvalues may have any Jordan 
structure. In the case where one or more eigenvalues is defective, i.e. not semisimple, the 
functions (Y and p are, generally, non-Lipschitzian. Thus, nonstandard techniques are required 
in the analysis of their variational properties. In order to give some insight into the problem, 
consider the following two examples. 

Example 1. Let 

&=[,,::,; & z’a”] 

where for convenience we restrict z to real values. This matrix has a semisimple triple eigenvalue 
A = 0 at z = 0. The eigenvalues of A(z) are 0 and +(z, + zf), so 

c?(z) = Iz, + Z,‘l 

(see Fig. 1). 
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Fig. 1. Approximate contour lines for a(z) in example 1. 

Example 2. Let 

0 1 0 

A(z)= I 0 0 1 z,+z; 0 0 1 
where z is real. This matrix has a nonderogatory triple eigenvalue 1 = 0 at z = 0. The eigen- 
values of A(z) are the three cube roots of z, + zz, so 

cu(z) = K/Z1 + z;I”3 

where K = 1 if z1 + zi I 0, K = 3 otherwise (see Fig. 2). 
Let us evaluate the ordinary directional derivative of CY, defined by 

CY’(Z’; d) = lim 
cY(zO + Ed) - cY(zO) 

El0 & 

for these two examples. We find that for example 1, 

(7) 

~‘(0; d) = lim Ied1 + E2d221 = ldll, 
&IO E 
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Fig. 2. Approximate contour lines for a(z) in example 2. 

while for example 2, 

a/(0; d) = lim Ied1 + E2d22’ 1’3 = co 

El0 & 

for every nonzero choice of d. These examples are typical: the ordinary directional derivative 
is always finite if the relevant eigenvalues achieving the spectral abscissa are semisimple, and 
almost always infinite otherwise. However, notice that in example 2, if d = [0 l]r, there does 
exist a curve tangent to d along which the difference quotient for the spectral abscissa is finite, 
in fact zero, namely Y(E) = [-c2 s]r. We are, therefore, led to consider a directional derivative 
which depends on properties of 01 along curves tangent to the given direction. 

Let y: C - C” be any analytic curve in C’ and consider the eigenvalues of A([) = A(y(/_‘)) near 
[ = 0. It is well known that these eigenvalues, being the roots of the characteristic polynomial, 
are given by the Puiseux-Newton series, that is, series in fractional powers of [ with the smallest 
such power being greater than or equal to l/n. The variational results that we obtain are a 
consequence of certain properties of these series. As we shall see, the derivation of these 
properties depends on a classical computational scheme due to Newton [lo] known as the 
Puiseux-Newton diagram or the Newton Polygon [l 11. 

This approach leads us to introduce a notion of directional differentiability that depends on 
analyticity in the following way: for w: @” - R, define w~(z; m): C” - R U {km) by 

wyz; d) = inf lim inf 
W(Y(&)) - w(z) 

3 
YE Vz,d) &IO & 



Matrix-valued mappings 471 

where 

r(Z, d) = (y: C - C”]y is analytic, y(O) = z, and y’(0) = d]. 

The superscript h in (8) is used to emphasize that +@(z; d) depends only on the holomorphic 
curves in 6’ that pass through Z. This notion of directional differentiability shares many of 
the properties of other such notions that have recently been developed in the literature on 
nonsmooth analysis [12-161. Indeed, the directional derivative (8) is closely related to the lower 
Dini directional derivative and, consequently, to the notion of lower semigradients or con- 
tingent derivatives [13]. Understanding the relationship between (8) and these other types of 
directional differentiability is important for the development of a calculus. Based on the results 
of this article, partial results in this direction are presented in [17]. These results concern the 
relationship to the proximal subdifferential introduced by Clarke in [ 181. However, a great deal 
more work needs to be done. We defer further discussion of these issues to future work. At 
present, we concentrate on the evaluation of (8) for the functions (Y and p. It is clear that for 
example 1, 

ah(O; d) = a’(0; d) = IdI1 

while for example 2, 

ah(O; d) = 0 

for d equal to a multiple of [0 l]r and 00 otherwise. 
The paper is organized as follows. We begin in Section 2 by deriving a lower bound on 

CY~(Z; d) in terms of the coefficients of the characteristic polynomial; this lower bound is 
achieved if a nondegeneracy condition is assumed. Then, in Section 3, we use the results of 
Section 2 to obtain a characterization of olh(z; d) in terms of the matrix A(z) itself, again 
establishing a general lower bound. The nondegeneracy condition required to establish that the 
lower bound is sharp imposes an important constraint on the eigenvalues of the matrix A(z): 

specifically, the condition can hold only if the eigenvalues achieving the maximum value in (1) 
are nonderogatory. As already noted, this is the generic case. The opposite extreme, namely the 
least generic case, occurs when all the eigenvalues achieving the maximum value are semisimple. 
In this case, however, one can precisely evaluate the ordinary directional derivative. This is 
done in [8]. Thus, the cases for which precise results are unknown are those where at least one 
of the eigenvalues achieving the maximum value is both derogatory and defective. Nonetheless, 
the lower bounds that we establish do provide a great deal of information about when these 
directional derivatives attain the value +a~. 

Finally, in Section 4 we extend the results of Sections 2 and 3 to the case of the spectral radius 
function, obtaining a precise value for ph(z; d) in both the nonderogatory and semisimple cases. 
The spectral radius case is somewhat more complicated than the spectral abscissa case because 
of the singularity at the origin, but the results have the same essential character. 

In the discussion that follows certain statements are sensitive to the domain of the variable 
being discussed. Thus, in order to avoid confusion, we obey the following convention concern- 
ing the labeling of the variables [, a, and z: [ will always represent a complex scalar, E a real 
scalar, and z a vector in 6’. 
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2. VARIATIONAL PROPERTIES OF THE SPECTRAL ABSCISSA IN TERMS OF 

COEFFICIENTS OF THE CHARACTERISTIC POLYNOMIAL 

Let &[A1 be the set of manic polynomials in A whose coefficients are analytic mappings 
from G C c=” to 02. If G = C”, we simply write 3C[n]. Let P be the polynomial defined in (4). 
Clearly, P is contained in X[A]. The results of this section only depend on this last fact. Thus, 
these results apply to any polynomial in 3C[n]. From [19, pp. 376-3811 there exists a neighbor- 
hood G of z” in G” on which P has the unique representation 

where, for each & E C(z’), the polynomial ,LI~ E X,[A] takes the form 

,&(n,z) = (A - A,)” + c,,(z)(l - &)“-I + “’ + c&(z), (11) 

where 

Ckj(ZO) = 0 for j = I, . . . , tk 

and tk is the multiplicity of the root Ak. We begin with the case in which P has only a single root 
A,, with multiplicity to, i.e. 

P(A, z) = (A - Ao)‘O + c,(z)(A - A,)‘“-’ + . . . + q&z), (12) 

where 

Cj(ZO) = 0 forj = 1, . . . . to. 

We will return to the general case at the end of this section. 
Our first objective is to understand the behavior of 01 along analytic curves in C” passing 

through z”. Let y: C ++ C” be an analytic curve satisfying y(O) = z”. Compose each Cj with y to 
obtain 

P@, Y(i)) = (A - ItoY” + P,(i)(A - IO)‘+ + ... + P,“(r) = 0, 

a polynomial equation in A with analytic coefficients pj([) = cj(v(i)), satisfying 

(13) 

Pj(O) = O, j=l > . . . . to . 

We may write 

P,(i) = /3j”‘[ + pj(2Q2 + . . . . 

where, for example, 

@” = c!(zO)y’(O). 
J J (14) 

In the discussion which follows we restrict c to a nontrivial real interval [0, co] and write E in 
place of [ to emphasize this restriction. 

As has already been noted, it is well known (e.g. [6, 191) that the roots of (13) are described 
by series in fractional powers of E. These series are commonly called Puiseux-Newton series, 
since it was Puiseux [20] who established their convergence; however, they were derived 
formally by Newton two centuries earlier (see also [I 1, Chapter 1, Section 2; IO, p. 881 for 
examples and applications). We obtain the results we need by making use of a diagram devised 
by Newton for the purpose of calculating coefficients of Puiseux-Newton series. 

Let ,$ = b,“,) be the first nonzero value in the sequence l#‘, /I)*‘, . . . j. By definition, 4 2 1, 
j=l , . . . . to. If pj(c) is identically zero, take rj = co; also, since the coefficient of (1 - n,)‘O in 



Matrix-valued mappings 473 

0 

Fig. 3. 

P(A, E) is one, take /,, = 0, /$ = 1. Now plot the values lj vs j, and consider the lower boundary 
of the convex hull of the points plotted. Let Sj be the slope of the line on [j,j + 11 forming part 

of this boundary, j = 0, . . . , t, - 1. Clearly l/t, I s0 I s, I .a. I .~_i . Figure 3 shows the 

diagram for the following example (taken from [19]) 

to = 3; & = 0; P,(e) = e; &(&) = -& - &2; &(&) = E2 + 2E3. 

We have l0 = 0, 1, = 1, 1, = 1, I3 = 2, and so so = s1 = $, s2 = 1. 
Now consider the following “Ansatz” argument. Suppose a root of (13) is to have the form 

A(&) - A, = a&p + .f. (15) 

where a is nonzero and p is the smallest power of E in the expansion for this root. Substituting 
(15) into (13), we need 

(&et@ + . ..) + (&‘I + . ..)(ato-‘e(‘o-‘)P + . ..) + . . . + (~&%4 + . ..)@&P + . ..) 

+ Gto& 4 0 + -a-) = 0. 

The terms involving the smallest powers of E are among the terms 

&OE’OP 
,P,a 

to-lElc+(to-l)P 
, . . . . j7to_,a&1+P, &o&o. (16) 

For cancellation to take place, at least two terms with the same smallest power of E must 
appear. Equivalently, p must equal one or more of the slopes so, . . ., s,,_~ defined by the 
Puiseux-Newton diagram. The following discussion will apply to a particular choice of such p. 

Definebandgbyp=s,=...=s,+,_,, so that the line in the diagram with slope p passes 
from the point (b, 1,) to the point (b + g, I,,,). Cancellation of the coefficients of the terms 
with the smallest powers of E in (16) requires a to be the root of a polynomial equation with 
degree g, with leading term fibag and constant term Bb+, , and with an additional intermediate 
nonzero term for each point (j, 4) lying on the line in the diagram with slope p, where b < j < 

b + g. Now let p = q/f, where q, f are relatively prime integers. By definition, p is an integral 
multiple of l/g, so g is an integral multiple off, say g = mf. It is then clear from the diagram 
that of the g - 1 abscissa values j between b and b + g, only everyfth value is a candidate for 
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the intersection of the line with a point with integer coordinates. Consequently the polynomial 
of degree g in a reduces to a polynomial of degree m in 6, which we may denote by Q(r). The 
conclusion is that the given value of p is associated with g roots with an expansion of the form 
(15), with CI taking the values 

r,“b’,h = 1, . . . , m, j=l I . . . . f (17) 

where the r,, are the m roots of Q(r) = 0, ri’f’ 1s the principal f th root of r,, and o is the principal 
fth root of unity. 

Completing the example given above, we see that the two values for p are s0 = s, = i and 
s2= l.Inthecasep=iwehaveb=O,g=2,f=2,m= l,withQ(r)=r- l,sothepos- 
sible values for Q are f 1, giving the Puiseux-Newton series 

A(&) - & = *&“* + .*.. 

Inthecasep= lwehaveb=2,g= l,f= l,m= l,withQ(r)=r- 1,sotheonlypossible 
value for a is 1, giving the Puiseux-Newton series 

A(&) - A, = & + . . . . 

The subsequent terms in the series may also be calculated by repeating the process. 
In the case where the polynomial P in (10) arises as the characteristic polynomial of an 

analytic matrix-valued mapping, the Puiseux-Newton series that can occur have been com- 
pletely characterized in the work of Lidskii [21] (see also [19, Section 7.4]), and Langer and 
Najman [22]. Lidskii employs a sophisticated approach predicated on his extension of Kato’s 
reduction technique [6]. Langer and Najman take a completely different tack. Their approach 
is based on the local Smith form (see [23, p. 3311). However, for the application at hand, such 
precision is not required. We provide an alternative development which is both elementary and 
self-contained. The key is provided by the next result. It is a generalization of [24, theorem 11; 
see also [25]. The lemma gives information about the coefficients of (13) when it is assumed that 
roots of (13) lie within O(E) of the half plane Re j$([ - A,) 5 0. 

LEMMA 1. Consider the polynomial equation (13), with roots given by one or more 
Puiseux-Newton series of the form (15). Let y, E C and suppose that there exists e0 > 0 such 
that all the roots A(E) of (13) satisfy 

Re j$,(A(e) - &) 5 BE + O(E). 

Then 

Re~,,P~” r -t,B, 

ReYg,2p$” 1 0, Im j@$” = 0, 

p!” Z 0 
J j = 3, . . . . to. 

Here (20) is understood to be vacuous if t, = 1. 

(18) 

(19) 

(20) 

(21) 

Proof. The coefficient Pi(c) is the sum of the differences A, - A(e) over the roots A(E) of (13); 

thus, (19) follows from (18), letting E + 0. The other results follow from the Puiseux-Newton 
diagram as follows. Consider the Puiseux-Newton series corresponding to p = s,, , the smallest 
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possible value. In order for (18) to hold either: 
(i) p 2 1 (e.g. if f = 1); or 

(ii)p=&,f=2,andRej+,,r,“‘=Oforh= l,..., m, where the r, are the m roots of Q(r), 
with Q(r) taking the form 

Q(r) = rrn + /?$‘)r”-’ + . . . + p$;“,‘. (22) 

No other cases having p < 1 are possible due to the splitting of the roots as described in (17). 
In both cases (i) and (ii), p > t, so /I/!” = 0 for j = 3, . . ., to from the Puiseux-Newton 
diagram. In the case p r 1, we also have & (l) - 0 In the casef = 2, observe that the condition - . 
Rej$,r,“’ = 0 is equivalent to the two conditions ReJio2r, 5 0 and ImJi,2r, = 0. Now, since 
-/3$” is the sum of the roots of Q(r), (20) follows. n 

We now apply this result to the evaluation of crh(zo; d), defined by (l), (3) and (S), where P 
is assumed to have the form (12). First observe that we can replace the limit infimum in (8) by 
limit since the perturbed roots of the polynomial (13) are given by Puiseux-Newton series of the 
form (15) for some nonnegative rational number p. Therefore, this limit always exists and can 
only take the value +a~ if it is not finite. Consequently, ah(zo; e): 6” ++ R U {+a] and is 
given by 

c&z; d) = 
inf lim4Y(E)) - 4z) 

-yEl?(Z,d) El0 & 
(23) 

We now state the main result of this section. 

THEOREM 2. Define (Y by (1) and (3) where P has the form (12) near z” E C” and choose d E C”. 
If any one of the conditions 

is violated, then 

otherwise 

Re c;(z’)d z 0, Im c;(zO)d = 0, 

cj’(zO)d = 0, j=3 , -**, to 

c&o; d) = +oo; 

(24) 

(25) 

ah(zo; d) 2 -i Re c;(z’)d. 

Moreover, if the rank of c’(z’) is to, where c: C’ ++ @lo is given by 

then equality holds in (26) whenever (24) and (25) are satisfied. 

Proof. Suppose +m > 6 > crh(zo; d). Then there is a y E r(z’, d) such that 

lim &J(e)) - a(zO) < 6 
, 

El0 E 

(26) 

(27) 
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or equivalently, 

(U(Y(E)) - cr(zO) < BE for c E [0, co], 

for some co > 0. Let /3j”’ = c,!(zO)d for j = 1,2, . . . . to as in (14). By invoking lemma 1 with 
y. = 1, we see that (24) and (25) must be satisfied. Thus, if any one of these conditions is 
violated, we must have ah(zo; d) = +m. By letting 6 1 ah(zo; d), we also obtain from lemma 1 
the inequality 

ah(zo; d) 2 -i Re/3?. 

Let us now suppose that the rank of c’(z’) is to. We need to establish equality in (26). Clearly, 
we need only consider the case in which (24) and (25) hold. In this case, equality follows if we 

can exhibit a curve y E r(z’, d) such that 

l im 4Y(E)) - 4z0) 
El0 & 

= -i Rep{‘). 

Consider the coefficients of the powers of (A - ,Io) in the polynomial 

(28) 

= (a - /lop + py’((a - a,)‘o-’ + (/3$“< + O(i2))@ - aop2 + . . -, 

= (a - a,)‘” + u,(()(n - ao)fO-’ + ?&([)(a - no)‘o-2 + -. .) (29) 

where i = fi. Note that these coefficients satisfy (20) and (21) with y, = 1. Also note that if 
y can be chosen from (9) so that (13) has these coefficients, then (28) is satisfied for this curve 
and the proof is complete. We now show that this can indeed be done. 

Define F: C”+’ - Cfo by 

F(z, i) = c(z) - u(i), 

where v: C - C’o is the curve whose component functions are the coefficients of the powers of 
(A - Ao) in the polynomial (29) 

u(5) = [v’(r), v,(C), . . .9 V,W = ic’(z”wKo + W2)9 (30) 

where the second equality follows from the definition of v. Let I c { 1, . . . , v) be such that the 
matrix c;(z’) is nonsingular and set .I = { 1, . . . , v)\Z. By the implicit function theorem [26], 

there is a neighborhood G C a)“-‘“+l of ((z’)~, 0) and an analytic mapping j? c - C=‘O such that 

for all (zJ, &J E G with 

Furthermore, 

Define y: C ++ C” by 

F(Y(z_,, c), ZJ, <) = 0, 

%k”)J, O) = (z’)I* 

P’((zO),, 0) = -c;(zO)-‘]c;(zO), -v’(O)]. 

Y,(c) = k”)J + @Jv 

(31) 

(32) 
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and 

VI(l) = 3(r.K), 0. (33) 

Then for all [ sufficiently small c@(c)) = v(c). Consequently, with this choice of y. the poly- 
nomial (13) is precisely the polynomial (29). Moreover, from (30)-(33) we have 

and 

Y;(O) = W.,(O), 0) T = 4, [I 
SO that y’(O) = d. Thus, y E lY(z’, d). This concludes the proof of the theorem. n 

Let us now return to the general case and recall the factorization (10). Our results in this case 
follow directly from the special case (12). 

THEOREM 3. Let P have the general form (10) near z” E C”, with a! defined by (1) and (3) as 

before. Set 

a,(~‘) = {Ak E X(z’): Re Ak = CY(Z’)), 

and choose d E C”. If for some A, E a,(~‘) any one of the conditions 

Re &(z’)d L 0, Im ci2(zo)d = 0, 

C~j(zO)d = 0, j=3 , **-, tk, 

is violated, then 

&z”; d) = +m; 

otherwise, 

(34) 

(35) 

(36) 

(37) 

crh(zo; d) 2 max 
i 

- Re ctTo)d : & E &,(z”) 
1 

. (38) 

Moreover, if the vectors (CAj(ZO): Ak E @.1(~o, d), j = 1, . . ., tk) are linearly independent, where 
a,(~‘, d) is the set 

1, E &,(z”): Re &tz”)d = min Re c;,(z’)d 

fk t/ 

: A/ E @,(zO) , (39) 

then equality holds in (38) when (35) and (36) hold. 

Proof. The proof is almost identical to that of theorem 2. The primary difference is that now 
all of the roots in a,(~‘) contribute to the value of c&z’; d). In order to see this observe that 
the inequality (27) implies that 

WWW - Ak) < BE for & E [O, &o] and & E @.o(z”), 

for some e. > 0. Consequently, (38) again follows from lemma 1. 
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In order to establish equality in (38), it is again sufficient to exhibit the existence of a curve 
y E I(z’, d) such that 

l im  aW)) - 44 = max _ Re MzO)~ : a, E @,(zO) . 
El0 & tk 1 (40) 

We generate such a curve precisely as in the proof of theorem 2 except now we must choose the 
curve from I(z”, d) so as to match the coefficients in (29) for each Ak E @i(z’, d). Just as 
before, it is the linear independence of the gradients lc,&(z”): Ak E C?,,(z’, d)] which guarantees 
that this can be done via the implicit function theorem. Moreover, it is clear that we need only 
match the coefficients for Ak E @,(z’, d) since these are the dominant first order terms. n 

3. VARIATIONAL PROPERTIES OF THE SPECTRAL ABSCISSA 

IN TERMS OF MATRIX ELEMENTS 

Let X[C’, C” “‘1 denote the set of mappings from C:” to UYxn each of whose components is 
an analytic map from C” to C. Let A E X[C, KY’“]. In this section we study the differential 
properties of the spectral abscissa (Y, defined by (1), (3), and (4). One can apply the results of 
the previous section to obtain differential information about cy since P, defined in (4), is an 
element of X[A]. However, by itself, this result is not complete since it does not describe the 
relationship between A and the terms C~j(ZO)d appearing in (38). In this section we describe this 
relationship, making use of results from [24] which in turn depend on work of Arnold [9]. Since 
our description depends on the Jordan decomposition of A (‘I = A(z’), we need to introduce the 

notation necessary for this discussion. 
Suppose AC’) is a matrix with eigenvalues A,, . .., A,, , having multiplicities t, , . . ., t,, 

respectively. Let the Jordan form of A(‘) be given by 

A(O) = SJs-1 

where , 
J/c, 

Jk = -*. [ 1 , 

J km,, 

and the Jordan block 

ak 1 
. . 

J/c/ = 

i -1 . . 
1 

lk 

has dimension nk[. We have 

nkl + ... + nkm, = tk, k = 1, ._., q. 



Matrix-valued mappings 479 

If mk = 1, & is said to be a nonderogatory eigenvalue, while if mk = tk, i.e. nkl = ..’ = 

nkmk = 1, Ak is said to be semisimple (nondefective). 

Definition 4. Define the jth generalized trace of a square matrix A, denoted by 

tro)A 9 

as the sum of the elements on the diagonal of A which is j - 1 positions below the main 
diagonal. Thus, one obtains the ordinary trace in the case j = 1 and the bottom left element of 
the matrix in the case that j is the dimension of the matrix. If j exceeds the dimension of A, take 
tro’A = 0. 

THEOREM 5. Let A E X[C, Cnx”] and choose z” E C”. Suppose that A(‘) = A(z”) has Jordan 
form as described above. Define 

A;’ = g (z’), forq= l,...,~. 
4 

Foreachq= l,..., v partition S-‘AY’S conformally with the partition of J and denote its 
diagonal block corresponding to Jk by Bqk , k = 1, . . . , q, with each Bqk having diagonal blocks 

Bqk, corresponding to Jkl, 1 = 1, . . ., mk. Then, for k = 1, . . ., q, 

for j = 1, . . . , tk , (41) 

where the functions ckj are as given in (11) for the factorization (10) of P(A, z) = det[U - A(z)] 

at z = z”. 

Proof. Let d E C” and y E r(z’, d) and define A = A 0 y. Given M E Cnxn denote by Mk, 
that block of M which conforms to the block Jkl of J. By [24, theorem 41 we have 

-C~j(ZO)d = T tro)(S-‘A’(O)S),, 
I=1 

= ,Fl t@(S ‘A’(O)dS),, 

= ,Tl trol(s-‘(ji dqAci)S) 
kl 

= qcl dq “c” t@Bqk/, 
I=1 

forj= I,..., tk. Since this holds for all d E C”, the result follows. H 

Remark. A generalization of this result, based on the block diagonalform of A, is given in [27, 
lemma 3.21. The block diagonal form of a matrix is not unique and includes the Jordan form 
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as a special case [28, Section 7.1.31. From the computational point of view, this approach has 
certain advantages since one need not compute the Jordan form in order to evaluate the 
derivatives cb. 

Thus, given the Jordan form (or, block diagonal form) of A(z’) together with A’(z’) it is 
possible to use theorems 3 and 5 to evaluate a lower bound for c&z”; d). This result is formally 

stated in the following theorem. 

THEOREM 6. Let the assumptions of theorem 5 hold, and define Q! by (l), (3), and (4). Choose 
d E C”, and define Q.,(z,~) and @,(z’, d) by (34) and (39), respectively. If for some Ak E @.,(z’) 
any one of the conditions 

Re i dq y tr(*)B,,, 5 0, Im i dq y tr(‘)Bqk, = 0, 
q=l i=l q=l I= I 

i d, F trQBakl = 0, j=3 7 .-., fk 3 

is violated, then 

otherwise, 

q=l -/=I 

ah(zo; d) = +a; 

c&z’; d) 2 max 
Re c; = , dq c;“! 1 tr(‘)Bqkl 

tk 

/I,ta,(z”+ 

Moreover, if the vectors 

for & E &(z”, d) and j = 1, . . . , tk, 

(42) 

(43) 

(44) 

are linearly independent, then equality holds in (43). 

Proof. The result is an immediate consequence of theorems 3 and 5. Note that, in the case 
that the linear independence condition holds, the implicit function theorem used in the proof 
of theorem 3 provides the proof of existence of a curve y(c) along which the difference quotient 
limit for the spectral abscissa of the matrix A achieves the given lower bound. Thus, an argu- 
ment such as given in [24, theorem 61 is not needed. n 

Remark. Note that C;“=“, trQBqk[ = tro’Bqk whenj = 1, but not when j > 1. This observation 

allows one to simplify the formula on the right-hand side of (43). However, in order to keep 
the notation consistent throughout the statement of theorem 6, we have not included this 
simplification into its statement. 

It will be helpful to consider a special case. Suppose that @,(z’) consists of a single 

eigenvalue, say A,, with multiplicity t, . If this eigenvalue is nonderogatory, it is associated 



with only one Jordan block Jr, with dimension t, . Let C = Ci= 1 d4Bq1. The necessary 

conditions for C&Z’; d) to be finite then reduce to 
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Re trc2)C 5 0 9 Im trc2’C = 0, tro)C = 0, j=3 3 *--, t1 9 

and its lower bound on the right-hand side of (43) reduces to 

i Re tr(‘)C, (45) 

the average value of the real parts of the eigenvalues of C. In the specific case of example 2, 

Section 1, we obtain 

C=id!?!(O)= 
q=, qhq 

so the necessary condition for a’(O; d) to be finite is dl = 0, and the lower bound is 0. On the 
other hand, if A, is semisimple, it is associated with tl blocks Jir, . . . . Jlt,, each of dimension 
one. In this case, the necessary conditions for ah to be finite hold vacuously, and its lower 
bound on the right-hand side of (43) again reduces to (45). In the specific case of example 1, 

Section 1 we have o o d, 
C= ;d,$O)= 0 0 0 

q=l 4 

i 1 d, 0 o 

so the lower bound on c&O; d) is 0. 
It should be observed that if any eigenvalue Ak E &(z”, d) is derogatory, then the vectors in 

(44) cannot be linearly independent. In order to see this, note that, for at least one j between 
1 and t,, j exceeds the dimension of all the blocks Jkl making up Jk, and, hence, the 
corresponding vector in (44) is zero. Thus, if CI!,(z’, d) contains a derogatory eigenvalue, then 
the sufficiency condition of theorem 3 is not satisfied. In this case, one should not expect to 
obtain equality in (43). Indeed, in the case where a,(~‘) contains only semisimple eigenvalues, 
the resolvent theory for eigenvalue perturbations yields the following result. 

THEOREM 7. If a,(~‘) contains only semisimple eigenvalues, then for every d E C”, 

ah(zo; d) = a’(~‘; d) = max max Re A;,, 
XIEa,(z9 IlIZ%& 

(46) 

where A;/, 1 = 1, . . . . t, are the eigenvalues of C; =, dqBqk and cr’(z’; d) is the ordinary 
directional derivative defined in (7). 

Proof. This is a consequence of [6, Section 11.2.3, (2.40)], which shows that the eigenvalues 
of A(y(c)) corresponding to I, E a,(~‘) have the form 

A/c + WC/ + o(l), I= 1,...,t, 
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regardless of which curve y is chosen from I(z”, d). The matrix called P in [6] is the eigen- 
projection for A, and equals YZ, where Z consists of the columns of S corresponding to A2,, 
which are right eigenvectors for ?,k, and Y consists of the corresponding rows of S-l, which are 
left eigenvectors. For further discussion see [8, Section 31. n 

Suppose a,(~‘) = (A,). In the generic nonderogatory case, crh(zo; d) can be expected to 
achieve its lower bound, namely the average of the real parts of the eigenvalues of 

C = C;=ld,B,,. On the other hand, theorem 7 shows that in the semisimple case, ah(zo; d) is 
the maximum of these quantities. Thus, considering example 1, Section 1 again we see that the 
lower bound on ah(O; d) is 0, the average of the eigenvalues of C, but the actual value of this 
derivative is Id,), the maximum eigenvalue of C. 

4. VARIATIONAL PROPERTIES OF THE SPECTRAL RADIUS 

Let us now shift our attention to the study of the function p defined in (2). We study the 
differential properties of p in the same manner as we studied these properties for CY. That is, we 
first consider the case when the spectrum near z” E 6” is given as the set of roots of a 
polynomial of the form (12) and then extend this result to the general case. To this end, consider 
the directional derivative ph(zo; d) defined by (8). As was the case for the directional derivative 
olh(x; d), the limit infimum in the definition of ph(zo; d) can be replaced by limit. This is justi- 
fied in the same way as it was for c?(z’; d), that is, by considering the splitting behavior of the 
eigenvalues under perturbation. Thus, we may write 

ph(z; d) = inf 
lim &J(c)) - P(Z) 

y E VO,d) E 10 E 
(47) 

where IQ’, d) is defined in (9), and ph(zo; a): C” ++ R U (+co). Continuing as in Section 2, we 
begin with the following key result for the case in which (12) holds. 

THEOREM 8. Define p by (2) and (3) where P is given by (12) near z” E C” and choose d E C”. We 
will consider two cases: p(z”) = 0 and p(z’) # 0. 

(I) Assume that p(z’) = 0 so that A, = 0. In this case we have 

ph(zo; d) 2 
L IcXzO)d I, 
to 

if cj’(z’)d = 0 forj = 2, . . ..fOr 

+m, otherwise. 

(2) Assume that p(z”) # 0 and consider the conditions 

Re Ztc;(z’)d L 0, Im iif,c;(z’)d = 0, 

c,!(z’)d = 0, j=3 7 .a., to . 

(48) 

(49) 

(50) 

Then 

ph(zo; d) L 
& [Ic;(z’)dI - Re X,c;(z’)dl, 
top(z ) 

if (49) and (50) hold, 
(51) 

otherwise. 
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Here it is understood that the function c2 is identically zero if t, = I. Moreover, if the rank of 
c’(z’) is to, where c: 07’ ,+ C’O is given by c,(t) c(z) = i 

i 1 , ct (4 
then equality holds in (48) or (51) depending on whether p(z”) = 0 or ~(2’) # 0 holds, 
respectively. 

Proof. In this proof we will continue to use the notation of Section 2. Let y E lY(z’, d), set 
pj”’ = cj(z”)y’(0) = c,‘(z’)d for j = 1,2, . . . , to as in (14), and let A(E) be one of the roots (15) 
of (13). Since 

IA(e)l2 - )Aoj2 = 2 Re io(A(e) - A,) + IA(E) - Ao12, 

a necessary condition for 

Be + o(e) 2 IW - IA019 

or equivalently, 

(52) 

(53) 

is that 

26(A,(& f O(E) 2 /A( - (JLo12, (54) 

~)A~\E + O(E) 1 ReXO(A(e) - Ao). (55) 

It follows from lemma 1 that if either (20) or (21) with y. = A,, or equivalently, (49) or (50), 
do not hold, then inequality (54) cannot hold for any 6 E R. Since this is independent of 
y E lY(z’, d), ph(zo; d) = +a, if any one of (49) or (50) are violated regardless of the value of 

P(Z4. 
Let us now suppose that (49) and (50) hold, i.e. (20) and (21) hold with y. = Ao. Then for 

every 6 > ph(zo; d) there is a y E r(z’, d) such that 

lim /Me)) - P(ZO) < s 
9 (56) El0 & 

or equivalently, 

W(e)) - P(ZO) < de for E E [0, co], 

for some .so > 0. Therefore, inequalities (54) and (55) are satisfied. 
As observed in Section 2, the roots of the equation (13) are necessarily Puiseux-Newton series 

of the form (15). Lemma 1 and inequality (55) imply that either: 
(i) the exponent p is greater than or equal to 1 corresponding to series of the form 

IL(&) = ILO + a& + O(E), 

with CI E C possibly taking the value zero; or 

(ii) the exponent p equals + corresponding to m pairs of roots of the form 

A(e) = A0 f (rhe)i’2 + (ii,)& + o(c), 

where, as with a in (i), & takes different values corresponding to different roots. 
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By summing over all the roots, we find that 

-pl’) = C a + C (ii, + &). 

Moreover, substituting the expressions for A(E) given in (i) and (ii) into (54) yields 

261A,le 2 (2 Re&,a)e + O(E) 

in case (i) and 

261A,\a 2 (Irhl + 2 Re &,CI& + O(E) 

in case (ii). Now summing these inequalities over all the roots gives the inequality 

(57) 

(58) 

(59) 

2&,12,,)e 2 
[ 

2 $ Ir,l + 2 Re&(z a + C (ii, + ~5)) 
h=l 1 

E + O(E), (60) 

where the sums without explicit indexing indicates summing over all the roots, while the factor 
2 appearing in the front of CT=, It-,( reflects the fact that there are two roots for each 
h = 1,2, . ..) m. Now, as explained in lemma 1, 

E jr,1 1 i rh = Ip$“/. 
I I 

(61) 

h=l h=l 

Combining this inequality with (57) and (60) gives 

Letting E 10, we obtain the inequality 

61~~1 2 i (l~$“\ - Re X,p?). (63) 

We now consider the two cases p(z’) = 0 and p(z”) # 0 separately. If p(z’) = 0, then 
inequality (63) implies that p$” = 0. Thus, ph(zo; d) = +co unless j$” = 0 for j = 2, . . . , to. 
Furthermore, observe that 

IC W)I 5 c I4dl < toh 
for all E E [0, co] where the sum is taken over all branches A(E). Letting 6 1 ph(zo; d) yields (48). 
On the other hand, if p(z’) # 0, then (5 1) follows immediately from (63) by letting 6 1 ph(zo; d). 

Next, suppose that the rank of c’(z’) is to and that (49) and (50) hold (otherwise equality in 
either (48) or (51) is trivially satisfied). We will only consider the case p(z’) # 0 since the case 
p(z”) = 0 follows in a similar manner. Moreover, in the case to = 1, we take j?$‘) = 0 as usual. 
Consider the coefficients of the powers of (A - A,) in the polynomial 

((A - A,) + a&)‘o-2[(n - A,) + Gj$%G + T&][(A - 1,) - q G + re] 

= (A - A,)‘0 + /?{“[(A - I,)‘+ + (P$“[ + @&)(A - Ao)‘o+ + . . .) (64) 

where cr and r are defined by the expressions 

0 = 2 [Ip.j’)I - ReX,P{‘)] 4 
1101 
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and 

t = $[P[” - (to - 2)a]. 

These coefficients are chosen so that not only are (20) and (21) satisfied with y, = &,, but also 
the expansion of each root satisfies 

The proof now follows the argument given in the proof of theorem 2, that is, one uses the rank 
condition and the implicit function theorem to establish the existence of a curve y E r(z”, d) 
such that (13) has the same coefficients as (64). With this choice of y equality holds in (51). n 

The main theorem of this section now follows from theorem 8. It is derived from theorem 8 
in the same way that theorem 3 was derived from theorem 2 and so its proof is omitted. 

THEOREM 9. Define p by (2) and (3) where P has the representation (10) near z” E C” with each 
,u~ given by (11). Choose d E C”, and define 

ao(zo) = (& E C(zO): l&l = P(ZO)J. 

We consider the two cases p(z”> = 0 and p(z’> f 0 separately. 
(1) Suppose p(z’) = 0 so that @to(zo) = C(z”) = (A,1 and I, = n. If any one of the conditions 

is violated, then 

otherwise, 

c;Jz’)d = 0, j = 2, . . . . n, 

ph(zo; d) = +m; (65) 

ph(zo; d) 2 f Ic; ,(z’)d I. (66) 

(2) Suppose ~(2’) # 0. If for some A0 E 610(zo) any one of the conditions 

Re xi&(z”)d 2 0, Im xic;2(zo)d = 0, 

$(z’)d = 0, j = 3, . . . . tk, 

is violated, then 

ph(zo; d) = +m; 

otherwise, 

(67) 

(68) 

(69) 

where 

ph(zo; d) L maxlY(&): Izk E @o(zo)l, (70) 

1 
w/J = tkp(zO) [I&(z”)dI - Re ~oc~I(zokfl 

with ck2 understood to be the zero map if tk = 1. 
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Moreover, if the vectors lckj(zO): Ak E GI,(z”, d), j = 1, . . . . tk) are linearly independent, where 
61,(z”, d) is the set of Ak E (II, such that Y&) = max(Y(r): [ E cRo(zo)] when p(z”) Z 0 and 
611(zo, d) = X(z’) otherwise, then equality holds in (66) or (70) depending on whether p(z’) = 0 

or p(z’) f 0 holds, respectively. 

One can now apply theorem 9 in conjunction with theorem 5 to obtain a result for ph(zo; d), 
where p is defined by (2)-(4), in terms of matrix elements, using the Jordan structure described 
in Section 3. We omit the details, but we briefly consider the case where 610(zo) consists of the 
single nonzero eigenvalue A,, with multiplicity t, . Let C = CG=, d,B,, . Then the necessary 
condition for ph(zo; d) to be finite reduces to 

Re 1, trc2’C 5 0, Im X, trc2’C = 0, tro’C = 0, j=3 t, 3 --., 

and, if this condition holds, 

ph(zO; d) - t,,l,, > 1 [Re 1, tr(‘)C - Itr@)Cl] (71) 

with equality if the linear independence condition also holds. 
Note that, as before, the linear independence condition cannof hold if any of the eigenvalues 

Ak in @i(z’, d) is derogatory. Thus, in this case, one should not expect the lower bound for the 
directional derivative to be achieved. Indeed, when (Ilo contains only semisimple eigen- 
values, we obtain the following result. 

THEOREM 10. Define p by (2)-(4). If (Ilo contains only semisimple eigenvalues, then for every 
d E 6Y the ordinary directional derivative p’(zo; d) exists, equals ph(zo; d), and satisfies 

if p(zo) = 0, 

p’(zO; d) = (72) 
if pko) f 0, 

where A&, 1 = 1, . . . . tk are the eigenvalues of CG=, dqBqk and the matrices Bqk are defined in 
theorem 5. 

Proof. It follows from [6, Section 11.2.3; 8, Section 31 in the same way as the proof of 

theorem 7. n 

Therefore, if, for example, p(z’) # 0, 610(zo) contains only the single element I,, and A, is 
semisimple, then the lower bound on ph(zo; d) given by (71) is the average of the values 
(l/IA,]) Re x,A’,,, I = 1 , . . . , t, , whereas ph(zo; d) is the maximum of these quantities. 

5. CONCLUDING REMARKS 

We have defined a new directional derivative, based on analytic curves tangent to the 
direction, which is suitable for the analysis of the spectral abscissa and spectral radius 
functions, and we have applied a very classical technique, namely the Puiseux-Newton 
diagram, to obtain necessary conditions for the directional derivative to be finite and, in the 
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case where these hold, lower bounds for its value. Moreover, as a consequence of the fact that 
these lower bounds were derived from properties of the characteristic polynomial, it was 
observed that, subject to a nondegeneracy condition, the lower bounds are sharp when the 
eigenvalues corresponding to the value of either (Y or p are nonderogatory. This is the most 
interesting case since nonderogatory eigenvalues are the most generic. These results nicely 
complement those obtained by Overton and Womersley [8] for the semisimple case, since, when 
multiple eigenvalues occur, the nonderogatory and semisimple cases lie at opposite structural 
extremes. In the semisimple case, the new directional derivative reduces to the ordinary 
directional derivative, and its value is the maximum of certain quantities depending on the 
derivative of A(z). In the nonderogatory case the directional derivative may be infinite, but in 
the case where the necessary conditions for it to be finite hold, the lower bound on its value is 
the maximum of the average of subsets of the same quantities, in the case of the spectral 
abscissa, and closely related quantities, in the case of the spectral radius. 
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