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We present a framework for the development of globally defined descent algorithms for the 
minimization of non-differentiable objective functions F := h o f with h convex. Within our struc- 
ture the global convergence properties of the Cauchy , Modified Newton, Gauss-Newton, and 
Variable-Metric methods are easily established along with that of several new approaches. 
Examples illustrating the calculational techniques are provided. 
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1. Introduction 

In this paper we present a framework for the development of globally defined 
descent algorithms that are designed to locate stationary points of functions of the 
form 

F=hof,  (1.1) 

where f : R  n o R  '~ is differentiable, and h :W~oR is convex. This problem and 
techniques to solve it play a central role in contemporary studies in mathematical 
programming. For example, the function h may be taken to be the identity, a norm, 
a penalty function, or the distance function to some convex set. Analyses of such 
problems where the function h is chosen to have a specific representation abound 
in thetiterature, but recently efforts have been made to unify the methodology. The 
endeavor was initiated by Anderson and Osborne [1], Osborne and Watson [20], 
Osborne [21], Fletcher [9], and Powell [24]. In [1] Anderson and Osborne provide 
the first uniform treatment of Gauss-Newton type methods for solving systems of 
equations via polyhedral norms, then in [20] Osborne and Watson extend this 
analysis to arbitrary norm structures on R" and provide the first indication that 
these methods could be extended to composite functions of type (1.1). Osborne 
[21] provides a survey of these results and those of others. In [9] Fletcher coins the 
term 'composite nonditterentiable optimization', and applies the technique to penalty 
functions, developing a Trust-Region algorithm that foreshadows the casting func- 
tion approach of this paper. Powell [24] extends these techniques and analyzes 
Gauss-Newton, Trust-Region, and Variable-Metric methods for minimizing (1.1). 
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Further refinements of  these methods are developed in the papers of  Powell and 

Yuan [25, 26, 31, 32] where attempts are made to obtain better computational charac- 
teristics and faster rates of  convergence. 

In the present work, we provide a more general theory for the development of  
algorithms for the minimization of (1.1). Within our framework the global conver- 
gence characteristics of all of  the standard techniques (e.g. Cauchy, Modified 
Newton, Gauss-Newton,  Variable-Metric) are easily established along with those 
of  several new approaches. We begin in Section 2 with a statement of  the general 
structure of  the algorithms to be investigated and prove a rudimentary convergence 
result. In Section 3 we address the question of  the boundedness of search directions, 
generalize the notion of  casting functions introduced in Wets [29], and derive several 
relevant stationarity criteria. In Section 4 we define three general classes of  search 
directions and show that they can be employed within the framework of  the model 
algorithm of  Section 1. Finally, in Section 5, we provide a convergence analysis via 
the notion of  epi-convergence, and conclude our study in Section 4 with a few 

examples demonstrating how the necessary underlying computations can be formu- 
lated as either linear or quadratic programs. 

The notation that we employ is for the most part the same as that of Rockafellar 
[27]. A partial list is provided below for the reader's convenience: 

f ' ( x ;  d):= lim " "x + A d ' f ( ]  ~ f ~ x ~ 

x,~o h 

Let f :  •" -* R* := R w {+oo} be convex, then 

D o m ( f )  := {x: f ( x )  < +oo}, 

epi(f) . '= {(x, a) :  f ( x )  <~ a, ote ~}, 

O~f( x) := {x*: f ( y )  >~ f ( x )  + (x*, y - x) - e, for all y • Dora(f)},  

f * ( x * )  := sup{(x, x*) - / ( x ) :  x • R"}. 

F o r f : R ' - R  and CON",  

argmin{f(x):  x • C}=  {)7 e C: f ( 2 )  = min{f(x): x e C}}. 

For C c R", co C is the closed convex hull of  C and int C is the interior of  C. 

For ]1-I[~ a norm on R", B~:={x: [Ix[[~<~ 1}. 
For C a nonempty convex subset of g~n, we have 

4,(xlC):={o, x~C, 
+m, x ¢  C, 

q,*(x]C) := sup{(x, x*): x* • C}, 

y(x lC) :=in f{y :  x e  yC, y~>0}, 

cO: = {x*: (x*, x)<~ 1 for all x e  C}. 
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For K a closed convex cone in ~", we have 

K°={x* : ( x* , x )<-O  fora l l  x c K } ,  

K*:=  - K  °. 

R~- := {x c ~": x~ >10, i = 1 , . . . ,  n, where x = ( x l , . . . ,  x,)T}, R ~ - := --R~-. 

For x c R" we define x+, x_, and Ixl componentwise as follows: x = ( x l , . . . ,  xn) T, 

(x+)i := max(0, x,), 

(x_)i := min(0, xi), 

(Ixl),:= Ix, I. 
The vector e e R* is the vector of ones, e = (1, 1 , . . . ,  1) r. 

2. The model algorithm 

The types of algorithms that we concern ourselves with are of the form 

xi+l := xi + ~idi 

where 

(2.1) 

Ai := max{yk: F(xi + ykd~) - F(xi) <~ cykAi, k = O, 1 . . . .  }, 

d~ ~ D~ c R n, A~ ~< 0, c ~ (0, 1), and y e (0, 1). In this context it is clear that the choice 

of the numbers A, and the sets D~ provide the key to the analysis of the algorithm. 

For our purposes we require that they satisfy the following three conditions: 

(a) Di # 0  for all i = 0 ,  1, 2 , . . . ,  

(b) [0E D~] ¢;~ [A~ =0]  ¢:~ [0~ OF(x~)], (2.2) 

(c) h(f(x~)+f'(x~)d~)-F(xi)<~A~<-O for all i = 0 , 1  . . . . .  

(Here OF denotes the Clarke subgradient [6].) 
Similar model algorithms have been studied in the context of nonditterentiable 

optimization by several authors [1, 4, 5, 7-12, 14, 20-26, 28, 30, 31]. In particular, 
the Armijo type stepsize routine has been found to be an especially useful tool in 
the development of very general global optimization strategies. The analysis that 
we provide for (2.1) is reminiscent of that given in Wolfe [30], as it is our intention 
to provide a broad framework from which many of the known techniques are easily 
derived. Moreover, our approach is also somewhat similar to that which may be 
found in the recent paper by Polak, Mayne and Wardi [23]. In the Polak, Mayne, 
and Wardi paper, the choice of search direction is an e-steepest descent direction 
calculated as the nearest point to the origin of their so-called 'e-smeared generalized 
gradient'. Generalized gradients of this type seem to have been first investigated by 
Goldstein [12], and later by Dixon [7] and Dixon and Gaviano [8], and is defined 
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by the expression 

~F(~):=co t )  aF(x) .  
xEB(~;e) 

In order to assure that their approach is computationally implementable, Polak, 
Mayne, and Wardi require that the function F to be minimized is semi-smooth in 
the sense of  Mifflin [17, 18]. The functions that we study, (1.1), are also semi-smooth 
(Mifflin [18], Proposition 5) and so the Polak, Mayne, and Wardi algorithm applies. 
But, as we shall see, due to the special structure of  our objective function, F = h of, 
the direction choices that we study have a greater attraction for both theoretical 
and computational reasons. 

In the lemma that follows, we present the key structural characteristic of  functions 
of the form (1.1) that will allow us to define a variety of descent directions satisfying 
conditions (2.2). 

2.3 Lemma. I f  F =  h o f  is such that f :  Rn ~ R " is Frechet differentiable on R n, and 

h: •" -* R is a closed proper convex function on W", then 

(a) OF(x), the Clarke suhdifferential, has the representation 

OF(x) := Oh(f(x))  off(x):= {y 6 Rn: y = zf '(x),  z c ah( f (x ) )}  

for all x ~ Rn, and 

(b) F'(x;  d) exists for all x and d in R n, and satisfies 

F ' (x;  d) <~ h ( f ( x )  + f ' ( x ) d )  - h ( f ( x )  ). 

Proof. Statement (a) is implicit in the work of  both Fletcher [9] and Powell [24], 

and is easily derived via Clarke [6, Theorem 2.3.10]. Statement (b) is also implicit 
in the work of  Powell [24]. The proof  is as follows. By Clarke [6, Theorem 2.3.10], 
F'(x;  d) exists for all x and d in ~". Choose x and d in R" and let K be a local 
Lipschitz constant for h at x (K exists as h is finite-valued and convex on R" [27]). 
Then for A I> 0 sufficiently small, we have that 

h ( f ( x  + Ad)) - h ( f ( x ) )  

= [h ( f ( x )  + Af ' (x)d)  - h ( f ( x ) ) ]  + [ h ( f ( x  + Ad)) - h ( f ( x )  + Af ' (x)d)]  

~< [(1 - A)h( f (x) )  + Ah( f (x )  + f ' ( x ) d )  - h ( f ( x )  ) ] 

+ g Ilf(x + 2td) - f ( x )  - h f ' ( x )d  II 

= h [ h ( f ( x )  + f ' ( x ) d )  - h ( f ( x ) ) ]  + Ko(a) 

from which the result follows. [] 

Thus we see that any direction d for which h ( f ( x ) + f ' ( x ) d )  < h ( f ( x ) )  is a descent 
direction for F. Therefore condition (2.2), along With the stopping criteria [0e 

aF(x)] ,  guarantee that algorithm (2.1) is always well defined. 
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We now give the fundamental convergence result for algorithms of type (2.1) that 
satisfy conditions (2.2). 

2.4 Theorem. Let Xo ~ R" and let F--- h o f  satisfy the assumptions 

(a) The function f :  R n -> R m is Fr&het differentiable with f '  
uniformly continuous on ~--6{x: F(x)  <~ F(xo)}, and 

(2.5) 
(b) the finite-valued convex function h : R ~ -> R is Lipschitz on 

F6{y: h(y) <~ F(xo)}. 

I f  {x~} is the sequence generated by algorithm (2.1) with initial point xo and stopping 
criteria 0 ~ OF(x), then provided that condition (2.2) is satisfied, one of the following 

m u s t  occur: 

(i) The algorithm terminates finitely at Xio with O£ 0F(xio), or limj~jAj = 0 for 
every subsequence J for which the associated subsequence { ds: j ~ J} is bounded ; and/or 

(ii) F(xi) ~ -oo; and~or 
(iii) the sequence {[Id, ll} diverges to +oo. 

Proof. Suppose to the contrary that none of (i), (ii), and/or  (iii) occur. Then there 
is a subsequence J such that sup{lldill: j ~ J} < oo and sup{Aj: j ~  J} ~ 13 < 0 for some 
/3 c ~. Now F(xl) ~ - ~ ,  hence the decreasing sequence {F(xii} is bounded below, 
and so has a limit. Therefore (F(Xi+l) - F(xi)) ~ 0 and thus by the Armijo inequality 
in (2.1), we get that A~A~ ~ 0. Hence we can assume with no loss of generality that 
limj~j k~ = 0 and )tj < 1 for a l l j  ~ J, since sup{A/ j  ~ J} ~< 13 < 0. The Armijo inequality 
now yields the relation 

cl~j'y-lAj < S(xj + aj'y-ldj) - S (  xj) 

for all j e J. But, as in Lemma 2.3, 

n(xj  + g T - l  d j ) -  F(xj) 

<~ xj~,-laj + K ]lf(x a + Xj~-14) - f ( x j )  - xjv-lf ' (xj)4 [1 

~ a~ , - ' a j+  KII ,~S I [ f ' ( / j+  t x # - ' d j ) - f ' ( x j ) l d j  dtll 

I~j~I-I[ Aj "[- K~,(xS'II411)II411], 
for all j e J, where K is a Lipschitz constant for h and the function co : E ~ R+ is the 
modulus of continuity for ft. Therefore 

0 < (1 - c)& + Ko  (kj~/-~H 4 II)II 4 II ~< (1 - c)/3 + K~o (kj3/-' II 4 II)ll 4ll 

for all j e 3". Now taking the limit as j -+ oo, j e J, and employing the boundedness of 
the subsequence {dj: j c J}, we obtain the contradiction 

0<~ ( 1 -  c)/3 <0,  

yielding the result. [] 
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Thus far, the discussion has been placed in a very general setting and in fact, 
without the refinements to be introduced later, the preceding results would be of 
little consequence. The primary benefit of these results and especially Theorem 2.4, 
though, is that they isolate the potential structual defects of algorithm (2.1) that 
must be compensated for in the designation of the sets Di and the numbers Ai. 
Specifically, we need a device to induce the boundedness of the search direction 
choices d~. Thus we are led to the notion of casting functions. 

3. Casting functions 

3.1 Definition. A mapping p : R" ~ R* := R w {+~}, is called a casting function if it 
satisfies the following four conditions: 

(1) p is a closed proper convex function, 
(2) 0 ~ int(Dom(p)), 
(3) 0=p(0 )  =min{p(d):  d ER"}, 
(4) p is inf-compact, or equivalently, limllxjl_~o~ p(x )= +oo. 

We denote by ~¢ the class of all casting functions, and by ~¢' those that are Fr~chet 
differentiable at the origin. 

Remark. The definition of casting function that we present here is a generalization 
of that which is given by Wets [29]. In his definition, it is required that the functions 
be symmetric. In fact, it is these symmetric casting functions that form the most 
important subclass of casting functions. 

It should be clear that both of the classes q¢ and ~'  are closed under addition, 
multiplication by positive scalars, and by squaring. Moreover, the pointwise 
supremum of any finite subset of c¢ is also in ~. Important examples of casting 
functions are the support, gauge, and convex indicator functionals of closed convex 
sets containing the origin in their interior. Other important examples are generated 
by symmetric positive definite bilinear forms. 

We now employ casting functions in defining our primary analytic tool for the 
development of techniques intended to minimize (1.1), that is, the class of convex 
functions 

d~-->qb(d; x ,p) :~"->~ 

defined by the relation 

¢ ( d ;  x, p):= h ( f ( x ) + f ' ( x ) d ) + p ( d )  (3.2) 

for every x ~ ~n and p ~ qg. In conjunction with these functions the following sets 
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will play an important role in our analysis: Let Po • c¢ and Xo • ~", then 

c¢(po) := {p • q¢: po(X) <~ p (x )Vx  • R"}, (3.3a) 

c¢'(po) := C¢(po) c~ ~g', (3.3b) 

L(xo) := {x: F(x )  <~ F(xo)}, (3.3c) 

S(po, Xo):= {d: 4 ' (d;  Xo, Po) <~ F(xo)}, (3.3d) 

@(po, Xo):= U ~ S(p ,x ) ,  (3.3e) 
p~c¢(O0) x~L(xo) 

q~(po,*):={d•R":  4 ~ ( d ; x , p ) < o o f o r s o m e x • R "  andp•CC(po)}, (3.3f) 

and observe that S(p, x) c q~(p, x) c q)(p, , ) ,  for all x • R" and p • c¢. We now have 
the following basic results concerning these sets. 

3.4 Lemma. Let Xo•R  n, let F = h o f satisfy condition (2.5a) of Theorem 2.4, and 

suppose that f is Frdchet differentiable on R". 
(a) Let S c ~" and let p • c¢. I f  p is bounded on S, then S is bounded. 

(b) I f  h is bounded below, then for any Po• c¢, the set t/'(po, Xo) is bounded. 
(c) Let II" II~ be a norm on R n. I f  f '  is bounded on the set L(xo), then the set 

qb(ll " H~, Xo) is bounded for all a > 1. 
(d) Let ~ > 0  and let I1"1[~ be a norm on g~n with unit ball B~. -Then the set 

@(tb(. 18B~), *) is bounded by & 
(e) Suppose Xo • ~" and p • c¢ are such that the set S(p, x) is bounded for all 

x • L(xo). Then for every x • L(xo) there exists a d~ • R ~, not necessarily unique, such 
that 

ff)(d~; x ,p)=min{q~(d;  x,p):  d •~"} .  

Proof. (a) This follows immediately from condition 4 of Definition 3.1. 
(b) Let M be a lower bound for h, and choose Po • c¢. Then for every d • qO(po, Xo) 

we have the inequality po(d)<~ F ( x o ) -  M. Hence ~(Po, Xo) is bounded by (a). 
(c) Let I1" I1~ be a norm on R", and let II" II ~' be a norm on R"  consistent with 

I1 IIv. Let K~ be h's Lipschitz constant with respect to 11" I[ ~', and let Kz be a bound 
on f '  with respect to I1" IIv and II" I1~,- Choose ~ > 1. Then for d • a~(ll" II ; ,  xo), there 
is some x • L(xo) such that 

lid II ~ ~ F(x) - h ( f ( x )  + f ' ( x )d )  <~ g ,  llf(x) - f ( x )  - f ' ( x ) d  II =,<~ K1K2It d II , ," 

Hence II d II 7- '  ~< K, K= and so @(11" II ~, Xo) is bounded. 
(d) This follows immediately from Definition (3.3f). 
(e) Since both h and p are closed proper convex functions, and f ' ( x )  is linear 

in d for every x • L(xo), we know that for each x • L(xo), 4) is continuous on S(p, x) 
and that S(p, x) is closed and bounded. Hence th attains its infimum on S(O, x). 
Consequently, ~b attains its global infimum. [] 
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Part (e) of  the above lemma provides a foreshadowing of things to come as it 
indicates one of  the procedures by which our search directions will be calculated. 
The boundedness of such directions is guaranteed, under mild assumptions, by the 
other parts of  the lemma. But even with boundedness, condition (2.2) still must be 
satisfied. In order to appropriately deal with this question, we extend the definition 
of  casting functions so that we can consider them as functions of  both d and x. To 
this end, we will employ the following notation: 

We denote by c¢. the set of all functions p: ~ xR~--> R that 
satisfy the conditions 

(a) p ( . ,  x) c c~ for all x c R ~, and (3.5) 

(b) [OcOF(x)+Op(O,x)] ¢~ [OcOF(x)]. 

Remark. Note that condition (3.5b) is superfluous if p ( . ,  x) c c¢, for all x c R". An 
example of  such a function that is not necessarily differentiable at the origin for all 
x c R n is as follows: Let Po c c¢ be such that Opo(O) is contained in the unit ball, B~, 
of some norm H" I1~- Define p(d, x) by the relation 

(ldist~(O, OF(x))po(d) if O~ OF(x), 
p( d, x):= t o d d )  if  Oe OF(x), 

for all x c R  n. (Here dist,(x, C):=inf{[lx-yH~: y c  C}.) Then p c  c~,. 

The following theorem is the starting point for the analysis required to verify 
condition (2.2). 

3.6 Theorem. Let F= h o f  where h:R'~-->R is a finite-valued convex function on R m 
and f: Rn __> R is Frdchet differentiable on Rn. 

(1) I f  OcOF(x), then OcOdp(O;x,p) for all pc  ~. 
(2) The following statements are equivalent: 

(a) OeOF(x); 
(b) 0c  0~b(0; x, p) for some or all p c ~*; 
(c) F(x)- -min{4~(d;x ,o):dcNn}forsomeoral locC¢*;  
(d) Oeargmin{cb(d;x,p): dcRn} for some or all pc  c¢,. 

Proof. (1) From the definition of ~, we know that Oc Op(O) for every p ccg. Hence 
the result follows immediately from the fact that 

04~(0; x, p) = Oh(f(x)) off(x) + 00(0, x) = 0F(x)  + 0p(0, x). 

(2) (a)C:~(b): The implication ( a ) ~ ( b )  follows from part (1). Conversely, if 
0c  04,(0; x, p) = OF(x)+Op(O, x), then 0c  OF(x), since p c c¢,. 

( a ) ~ ( c ) :  Let 0 c OF(x) and define 4~(" ; x, 0): N n ~ R by 

~b(d; x, O):= h( f (x)  +f'(x)d).  



268 James V. Burke / Composite nondifferentiable optimization 

Then O~Oga(O;x,O)=OF(x), hence ~b(.;x, 0) is minimized at d = 0  due to its 
convexity. The implication now follows from the inequality 

F(x )  >i min{th(d ; x, p): d e R"} >I min{~b (d ; x, 0): d ~ R "} 

where p is any element of c¢. 
( d ) ~ ( a ) :  Suppose there exists p ~ cg. for which 0 ~ argmin{th(d ; x, p): d e R"}. 

Then 0~ 0th(0; x, p), and so 06 OF(x) by the implication ( b ) ~ ( a ) .  
( c ) ~ ( d ) :  Suppose there exists poe c~. for which F(x)  = min{th(d ; x, P0): d 6 R"}. 

Then clearly 06 argmin{~b(d ; x, Po): d 6 R"}. But then by the string of implications 
( d ) ~ ( a ) ~ ( c ) ,  we have that F ( x ) =  min{~b(d; X, p): d ~ R "} for every p ~ c~,, and 
so Ocargmin{qb(d;x,p):  d c R  ~} for all pE c~.. [] 

Before leaving this section, we state one more result concerning the stationary 
characteristics of the functions (3.2). Since the result is a straightforward application 
of Propositions 1 and 2 in Bertsekas and Mitter [3], we omit its proof. 

3.7 Theorem. Let the assumptions of  Theorem 3.6 hold and let the functions (a( . ; x, p) 
be as in (3.2) with p ~ ~*. Then 

(a) [O<~F(x) - in f{c#(d;x ,p) :  d~R"}<~e] ¢=> [O~O,qb(O;x,p)] where O, rep- 
resents the usual e-subgradient operator of  convex analysis [27], and 

(b) / f0~  a~b(0; x, p) and d ~ ~" is any vector such that ~b *( dlO~q~ ( O; x, p ) ) <0,  then 

F ( x )  - inf th(Ad ; x, p) > e. 
A~O 

4. Search directions 

For x ~ R" and p ~ c~, we define the function d ~ A (d ; x, p): R" ~ R by the relation 

A(d;  x, p):= ~b(d; x, p) - F(x )  (4.1) 

and note that F'(x;  d)  <~ A(d  ; x, p) for all x and d in •", and p 6 c~, by Lemma 2.3. 
Given p ~ c¢., we define the following three classes of search directions. 

4.2. Set 

Al(x, p) := inf{A (d; x, p): d ~ R "} 

and 

Dl(x ,p ,  r):= {d: A(d;x ,p)<~rA~(x ,p)}  

where r ~ (0, 1] is a relaxation parameter. 

4.3. Let o': R" -~R" be a selection from argmin{~b(d; x, p): d e R"}, i.e. 

tr(x) e argmin{~b(d; x, p): d a R"} for all x c R n, 
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and set 

and 

A2(X , p):= h ( f ( x )  + f ' (x )o ' (x) )  - F (x )  

D2(x, p, r):= {d: h ( f ( x )  + f ' ( x ) d )  - F (x )  ~ rA2(x , p)} 

where r e (0, 1] is a relaxation parameter. (In order to simplify the presentation, we 
have chosen to suppress the choice of selection, tr(x), from the notation.) 

4.4. Choose r e  (0, 1) and define 

I ° e(x)  := max{rP: O~ Or, q~(O; x, p), p =0,  1, 2 , . . .  }, 

then set 

and 

o):= 

if 0e  a~b(0; x, p ) ,  

otherwise, 

['{0}, if e(x)  = O, 
/ 

D3(x, p, r):= ~{d: ~O*(d[0~x)¢(0; x, p)) < 0, and A(d;  x, p) ~ A3(x, p)}, 

t otherwise. 

(Here we have suppressed the parameter r in the notation for A 3 for the sake of  
simplicity.) 

If 0~ a4~(0; x, p) the statement that the set D3(x , p, r) is nonempty is easily seen 
to be equivalent to Theorem 3.7, part b. In fact, this choice of search direction is 
simply a generalization of that which is employed in the Bertsekas-Mitter e- 
subgradient algorithm for convex functions [3]. For ke{1,2},  we establish the 
nonemptiness of  Dk(X, p, r) in various situations by employing the results of Lemma 
3.4. Clearly, D k ( X  , p,  r) ~ D k ( X  , p, 1) for every r e (0, 1]. Hence we need only establish 
the nonemptiness of Dk(X, p, 1). But, by Lemma 3.4e, Dk(X, p, 1) is nonempty if 
S(p, x) is bounded. Finally, very general conditions for obtaining the boundedness 
of S(p, x)  are established in parts b, c, and d of  Lemma 3.4. 

Given the nonemptiness of the sets Dk(X, p, r), the following lemma confirms that 
these search direction choices do indeed satisfy the requirements of condition (2.2). 

4.5 Lemma. Let the assumptions of  Theorem 3.6 hold. Choose Xo e ~ ,  p e c¢,, and 
ke{1 ,2 ,  3}, then select re(O, 1 ] / f k e { 1 ,  2}; otherwise, re(O, 1). I f  the set S ( p, x ) is 

bounded for all x e L(xo), then 

(a) Dk(X, p, r) ~ 0 for all x e L(xo), - 
(b) [OeDk(x ,p , r ) ]  ¢:> [Ak(X,p)~O] ¢:> [OcaF(x)] ,  and 

(c) h ( f ( x ) + f ' ( x ) d ) - F ( x )  <- Ak(X, p) for all 
x e L(xo) whenever d e Di,(x, p, r). 
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Proof. As was noted in the discussion preceding the lemma, Dk(X, p, r) ~ 0 whenever 
S(p, x) is bounded for k = 3. Moreover, (c) follows from the construction of Ak(x, p) 
and Dk(x,p, r). Thus we need only establish (b). For k = 3 ,  (b) again follows by 
construction, and for k = 1, (b) is an immediate consequence of Theorem 3.6(2). 
For k = 2, (b) would also follow from Theorem 3.6(2) if we knew that 

[OeDz(x,p, 1)] ¢~ [Az (x ,p )=0  ] ¢:> [0~OF(x)] .  

In order to see that this is indeed the case, recall that 

[ 0 ~ 0 F ( x ) ]  ¢:> [F ' (x ;  d)~>0 for all d ~ R  ~1 (4.6) 

[5, Proposition 2.3.2]. Next let o-(x) be the selection from argmin{~b(d ; x, p): d e N n } 

used- in defining D2(x, p, 1). Then, by Lemma 2.3b, we have the inequality 

F'(x; o'(x)) <~ A2(x , p) ~ zll(x , p) ~< 0. 

Hence if0 ~ OF(x), statement (4.6) implies that A2(x, p) = 0. Conversely, if zl2(x, p) = 
0 )=0 ,  then A l (x ,p )=0 ,  yielding 0 ~ F ( x )  via Theorem 3.6(2). Finally, the 
equivalence of 0 ~ D2(x, p, 1) and A2(x, p) = 0 is apparent from their definitions. 

[] 

5. Convergence 

In this section we determine conditions under which accumulation points of 
sequences generated by algorithm (2.1) are also stationary points of F. Theorem 2.3 
eschews this issue and only speaks of the convergence of functional values. In fact, 
without the imposition of further requirements on the choice of casting functions, 
the efficacy of algorithm (2.2) is in serious doubt, as is illustrated by the following 

example. 

5.1 Example. Choose XoC E", 3 > 0, and Po c ~. Define p ~ ~* as follows: 

[p0(d) if IlX- Xoll >1 8, 

o(d 'x):=lq~(dl(6- l lx-x°l l )B)"  2 otherwise, 

where B := {x: IIxll <~ 1). Then no matter what the function F, the iterates generated 
by algorithm (2.2) with initial point Xo and search direction choice Dk(x, P, r) for 
k e {t, 2}, cannot escape the g-ball about Xo. 

Thus we see that further restrictions on the choice of casting function p ~ ~* are 
required in order to obtain meaningful convergence results. We begin by observing 
that implicit in the usage of either of the stepsize choices DI(X ~ p, r) o r  D2(x, p, r) 
is the minimization of the convex functions th(d ; x, p) at every iteration. Thus we 
may view the algorithm as successively minimizing a sequence of convex functions 
that are themselves local approximations to the function in which our real interest 
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lies. The natural and appropriate technique by which such optimization schemes 
are analyzed is via the notion of epi-convergence. The basic properties of epi- 
convergent sequences of  convex functions as applied to optimiztion problems, are 
developed in, for example, the works of Attouch and Wets [2, 29]. 

5.2 Definition. Let {f}~o  be a sequence of closed convex functions with domain in 
R n and range g~* := ~ u {+eo}. We say that {f} convergespointwise to the closed convex 
function f:  ~n ~ ~ ,  and write f -->of if  limi f (  x ) = f ( x )  for all x ~ R ~. We say that {f} 
epi-converges to f and write f ~ ~ f if the epi-graphs of the f converge to the epi-graph 
off ,  that is 

limsup ep i ( f )  = epi( f )  : liminf ep i ( f ) ,  

where the epi-graph of a convex function g : R " ~ *  is the set epi(g):= 
{(x, a)  ~ R" xg~: g(x) <<- a, x c Dom(g)}. 

The central result of  this section is as follows. 

5.3 Theorem. Let Xo 6 •" and let F = h o f  satisfy the hypothesis (2.5). Choose p ~ c~, 
such that the set 

S*(p, Xo) := U S(p, x) 
x~L(xo) 

is bounded. Let k c {1, 2, 3}, and if k ~ {1, 2} select r c (0, 1] ; otherwise, select r c (0, 1). 
Suppose that {x~} is the sequence generated by algorithm (2,1) with initial point Xo, 
stopping criteria 0 c OF(x), and the designations 

~rAk(x~,p) / fk  e {1, 2}, 
D;:= Dk(xi, p, r) and A~:= [A3(x~, p) otherwise, 

for all 
p( ., yj) ~v p( ., x*) for some subsequence {Ys} of {xi}, then 

lira (min{05(d ; ys, p): d ~ R"}) = min{05(d ; x*, p): d ~ R"} = F(x*),  
J 

lira sup[argmin{05 (d ; y j, p): d ¢ R"}] c argmin{05(d ; x*, p): d c R"}, 

F(x~) ~ F(x*) ,  and OcOF(x*). 

i = 0 ,  1 , 2 , . . . .  I f  x* is an accumulation point of {x~} with y j ~ x *  and 

(5.4) 

(5.5) 

Proof. Let {yj} be as in the hypothesis with p( . , y j ) ->Pp( . , x* ) .  Then 
05(.; yj, p) -->P 05(.; x*, p) with int(Dom(05(. ; x*, p))) ~0.  Hence by [29, Corol- 
lary 4], 05(- ; yj, p) __>e 05(. ; x*, p). Thus, by [29, Theorem 7], we have the first half 
of (5.4), and by [29, Theorem 9], (5.5) also holds. Furthermore, F(xi) ~ F(x*),  since 
{F(xi)} is a decreasing sequence, and the sequence {lid ill} i suniformly bounded, 
since {dl} c S*(p, Xo). Hence Ai --> 0 by Theorem 2.4. 
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Case 1 : k = 1. Since Ai ~ 0 we have that 

lim [F(x~) - min{4~(d ; x~, p): d ~ R"}] = 0. 
i 

Therefore, by the first half  of  (5.4), we have that 

F(x*) = lira F(yj) = lira [min{~(d ; yj, p): d ~ ~"}] 
J J 

= min{~b(d ; x*, p): d ~ R"}, 

and so 0 E OF(x*) by Theorem 3.6(2). 
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Case 2: k = 2. Since A~ -~ 0, we know that A2(x~, p) ~ 0 and so Al(xi, O) ~ 0, since 

Az(X~,p)<~Al(x~,p)<~O. Hence we are back in Case 1, and so O~c~F(x*) with 
F(x*) = min{4~(d ; x*, p): d ~R"}, again by Theorem 3.6(2). 

Case 3: k = 3. From Theorem 3.7a we know that 

0<~ F(xi) -min{~b(d ; xl, p): d ~ R " } ~  < --r-lA3(xi, p) 

for all i sufficiently large, since A~-~0. But then a~(x~, p ) - - 0 ,  and so we are back 

in Case 1, thereby establishing the result. [] 

Due to the generality of  the above result, there exist a multitude of corollaries 
and refinements that can be derived by, for example, identifying the specific type 

of localizing function one is interested in considering. Such analyses, although of 

great importance,  are best left to papers wherein the local properties of  these 
algorithms are also considered. In lieu of this analysis, however, we do provide a 

short list of  examples implicated by our study and briefly indicate how the necessary 

computations can be performed by using only linear or quadratic programming 

subroutines. • 

6. Examples 

In this section we indicate how one can compute the entities Ai(x, p) and Di(x, p, r) 
of Section 4 for two standard classes of  problems. The first class of  problems is that 
of  unconstrained minimization of differentiable functions. In this case the convex 
function h is simply the identity map, and so, as one would expect, we simply 
recover many of  the classical techniques. The second class of  problems is that of  
constrained optimization via exact penalty methods. Indeed, it is for this class of  
problems that our approach was originally intended, and so, as we shall see, requires 

a good deal more care and effort. 

6.1. Techniques for unconstrained minimization 

In this section the convex function h is taken to be the identity map. 
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6.1.1. Cauchy methods 
Define p c ~g* by p(d, x) :=  ~(d[B2) for all d and x in ~", where B 2 is the unit 

ball for the/z-norm. Then A~(x, p) = -[[V/(x)  H2 and D~(x, p, 1) = {-Vf(x)l[Vf(x)[[2 ~} 
for i = 1, 2. For the e-subdifferential approach, we need to choose r c (0, 1), in which 

case 

e(x) -- max{re: r e < HVf(x)ll2,p =0,  1, 2 . . . . .  } = -A3(x, p), 

and 

D3(x, p, r) = {d ~ B2: e (x)II d 112 < -Vf (x )d ,  and e (x) <~ -Vf (x )d} .  

In particular, -Vf(x)IlVf(x)l l  ;1 D (x, p, r). 

6.1.2. Variable metric methods 
Let Y( be a set of real positive definite symmetric matrices, all of  whose eigenvalues 

lie in a compact set, and suppose that to each x c R" there is associated some H~ ~ Yg. 
Define p c ~* by p(d, x) := ldTHxd. Then 

and 

2d,(x,  p) = A2(x, p) = --Vf(x)THxlVf(x) 

2D,(x,  p, 1) = D2(x, p, 1) = {-HxlVf(x)}. 

For the e-subdifferential approach choose r ~ (0,  1), then 

e(x)  = max{re: 2re < IlVf(x)II ~,;,, p = 0, 1, 2 . . . .  } = -A3(x, p), 

O~(x)6(O; x, p) ={d*:  [[d*-Vf(x)[l~;~ ~< 2e(x)}, 

and 

D3(x, p, r) = {d: ~b*(dlo~(x)~b(0; x, p)) <0 ,  Vf(x)Td:-~ldTnxd ~ --e(X)}, 

where 11. IIH; 1 is defined by the relation 

Ilzll-;' : =  ( ZT HxlZ) 1/2 

for all z c R". In particular, it is a simple matter to verify that - H ; l V f ( x )  ~ D 3 ( x ,  19, r ) .  

6.2. Exact penalty methods 

Let h :~  xR'--> R be the function 

h(x, y):= x +  a d i s t , ( y l - K ) ,  (6.2.1) 

where a > 0, K = R~', and d i s G ( y l - K )  := inf{lly + k[I ~: k E K}. Let f :  R"--> R x W" be 
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defined by 

f ( y )  := ( f l ( x ) ]  (6.2.2) 
\ f 2 ( x ) ] '  

where f l  : R" ~ R and f 2 :  Rn ~ Rm are both  Fr6chet  differentiable, and set F := h o f  
We now present  a list o f  lemmas that serve to dissect the structure o f  the funct ion 
h. The proofs  we provide are in fact only sketches of  proofs  as we omit the explication 
of  several details in the computat ions.  For  fur ther  informat ion regarding these types 

o f  computat ions ,  the reader  is referred to the following excellent references: 
[3, 13, 19, 27]. 

6.2.3 Lemma. Let K be a closed convex cone in the real normed linear space Y. Then 

d i s t ~ ( y I - K )  = y ( y l B ~ -  K)  = 6*(y lB  ° ~ K*) ,  

where B~ := {y: Ilyll~ ~< 1}. 

(For  the proof ,  see [4, 5].) 

6.2.4 Definition. A norm II" ]] ~ on R "  is said to be mono tone  if 

Ixll lx21 Ilxlllo  IIx211. 
(Note: The /p-norms are monotone  for 1 ~< p <~ oo.) 

6.2.5 Lemma. If II Ilo is a monotone norm on R" ,  then 

dist~[Yl R-~] = iIY+II~. 

Proof. Note  that  if z ~ ~+ ,  then 0 ~< x+ <~ (x + z)+. Hence  

]lx+l[~> inf  Ilx+zll~ = inf  H ( x + z ) + - ( x - z ) _ N ,  

/> inf  I[(x + z)+ll~>~ llx+ll~. [] 
z ~  

6.2.6 Lemma. Let h be as in (6.2.1), with II " H , monotone, then 

h*(x*,  y*) = qt(x*[{1}) + ~b(y*]ol(B ° n K*) )  

and 

O~h(x, y) = {1} x a{y*:  y* e B ° c~ K* ,  Ily+ll~- e~-~ ~< (y*, y)}. 

Proof 

h*(x*,  y*) = sup {((x, y),  (x*, y*)) - h(x,  y)} 
(x,y) 

= sup {(x* - 1)x} + a sup {(y, a - l y * )  _ t ~ , ( y [ B  o (3 K*)} 
x y 

= g,(x*l{l})+ q~(y*la (B ° c~ K*) )  
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O~h(x, y) = {(x*, y*): h(x, y) + h*(x*, y*) <<- ((x, y), (x*, y*) )+  e} 

-- {(1, y*): y* ~ a (B  ° c~ K*), a~O*(ylB ° n K*) - e ~< (y, y*)} 

= {(1, ay*): y* 6 B ° c~ K*, ~*(yJB ° n K*) - ea- '  <<- (y*, y)} 

={1}xa{y*:  y * 6 B °  ~ K  *, [[y+[f~-ea-~<-(y*,y)}. [] 
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6.2.7 Lemma. Let f l  and f2 be two closed proper convex functions mapping R" into R 
with int (Dom(fl))  c~ int(Dom(f2)) # ~. Then 

O~ (f,  +f2)(Xo) = U {O~Jl(xo) • 0~J2(Xo)} 

81+E2=E 

for all Xo ~ D o m ( f 0  n Dom(A).  

Proof. This is just a special case of Theorem 2.1 in [13]. [] 

6.2.8 Lemma. Let h and f be as in (6.2.1) and (6.2.2), respectively, and set F = h o f  

For e > O, define 

O~F(x):= O~h(f(x)) of ' (x)  and f~(x;  d):= ~O*(dJGF(x)) 

for all x ~ R": Then given x c R ~ and a norm I1" IJ ~ on R n, we have that 

-disG[O, GF(x ) ]  = min f'~(x; d) 
d c B  ° 

where there exist d ~ B ° and x* ~ O~F(x) satisfying 

min f'~(x; d)=f'~(x; d ) =  (x*, d )= - I Ix* l l~ - - -d i sG[0 ,  GF(x)].  
d ~ B  ° 

Proof. The result is a straightforward application of the Minimum Norm Duality 
Theorem for Convex Sets which can be found in [15, Theorem 1, p. 136]. (For a 
generalization to semi-norms, see [5].) [] 

Remark. We shall call the direction d obtained in the above lemma the e-steepest 
descent direction for F at x. 

The above/emmas provide the theoretical tools required to compute the examples 
that follow. We omit the derivations as they are quite lengthy although straight- 
forward. 

In the first set of  examples, we indicate how the search direction choices Dl(x, p, r) 
and D2(x,p, r) can be characterized by showing how to solve min{da(d;x,p): 
d 6R"}. 

6.2.9(a) Variable-metric techniques. Let Ygbe a set of real positive definite symmetric 
matrices, all of  whose eigenvalues lie in a compact set, and suppose that to each 
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x ~ ~", there is associated some Hx ~ ~. Define p c c~. by p(d, x) := ½drH~d, and set 
[[' [[, := I[" 11~ in the definition of h in 6.2.1. Then 

rain oh(d" x, p) ~- min f~(x)d + o~y +½dX H~d 
acR" ' (d, :~) 

subject to f2(x) +fg(x) d <~ re  

0<~% 

6.2.9(b) Variable-metric with a trust region, Let ~ be as defined in 6.9(a), let T be a 

compact set of  positive real numbers, and suppose that to each x c R" there is 
associated some H ~  and some /3x~T. Define p~C~, by p(d,x):= 
½dVH~d + qJ(d[/3xBoo), and set 11. [I, := ]]" 111 in the definition of h in 6.2.1. Then 

rain oh(d" x, p) -~ min f~(x)d + aeV z +½dV Hxd 
d6~ n ' (d,z) 

subject to f2(x)  + f~ (x )  a <~ z, 

O ~  2, 

- ~ e  ~ d ~ ~ e .  

6.2.9(c) Sequential linear programming. Let T be as in 6.9(b) and define p E c¢. by 

p(d, x):= tk(dl~xBo~), and set 11. [l~:= I[" [Ioo in the definition of h in 6.2.1. Then 

rain ~b(d ; x, p )  = minf[(x)d + o~y 
d e ~ "  (d,~/) 

subject to f2(x)+ f~(x)d <~ ye, 

0<~ y, 

-13xe ~ d <~ [3xe. 

In the second set of examples, we indicate how a search direction d ~ D 3 ( x  , p, r )  

can be determined. Our approach is to use the directions of  e-steepest descent, 
thereby simultaneously determining whether or not OEO~qS(O;x,p). For these 

examples, however, one should note that we restrict ourselves to cases where p is 
representable as a linear combination of polyhedral norms and indicator functions 
so that aE~b(0; x, p) can be represented by linear systems of  equations and 
inequalities. 

6.2.10(a). Let/3:R" ~R+ be such that 

dist,[0, OF(x)] <~ ~(x) <- ~z distl[0, OF(x)] 

for all x ~ R", where 0 < ~:~ <~ ~2 < 1, and define p ~ c¢. as in the remark after definition 
(3.5) by 

p(d,x):=B(x)lldl[, for all x~R" .  
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Finally, let I1" I1~ := I1" H1 in the definition of  h in 6.2.1. Then 

dist2[0, a,4~(0; x, p)] = min ½11f~(x) + af~(x)~zl+/3(x)z=ll~ 
(z~,z~) 

subject to 0 <~ z~ <~ e, 

-e<~z2 <~e, 

IIf2(x)+ll 1 -- eo~-I ~< ( z I , f 2 ( x ) ) .  
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6.2.10(b). Let T be as in 6.2.9(b) and define p e cg. by p(d, x) := ~h(dl/3xB1) for all 
x e R " ,  and set I1" I1~ := [l" I1~o in the definition Of h in 6.2.1, then 

distoo[0, o~(b(0; x, p)] = min 
(el,~2,Zl,Z2,'Y) 

subject to e = e l { - e 2 ,  0 ~ e l ,  O~e 2. 

0~<Zl, eTzI ~ 1, 

[[A(x)+l[~- el~ -1 -< (z~, A(x)>, 

--8.2 e<< . 22<. 82e , 

-- y e  ~ f ; ( x )  + o,f~,(x)Tz1 + ~xZ2 --< ye. 

Once x* := (~), solving dist[0, 0~b(0; x, p)], is obtained, one employs the align- 
ment condition of Lemma 6.2.8 to compute a direction of e-steepest descent, a~ 
(Alternatively, one could solve the dual of  the above programs to get d directly.) 
Next, perform the one-dimensional minimization 

rain (b(Ad; x, p), (6.2.11) 
A~>0 

which is also a linear or quadratic program, to obtain X. Mor.e specifically, the line 
search (6.2.11) can be performed by a recent algorithm of Lemarechal and Mifflin 
[16], as their method is finitely convergent for the examples that we have considered. 
Finally, by Theorem 3.7, Ad ~ D3(x, p, r). A more detailed exposition of computations 
of  this type can be found in Bertsekas and Mitter [3]. 

Remark. In examples 6.2.9(b) and (c), and 6.2.10(b), some care must be taken with 
respect to the.set T and the association/3x c T to each x c W' in order to obtain the 
existence of  a subsequence {yj} c {xi} for which p ( - ,  yj) ~P p ( . ,  x*), as is required 
for the conclusion of Theorem 5.3 to hold. The existence of such a subsequence 
{&} is only guaranteed if there is a subsequence {/3xj:j ~ J} of the sequence {/3x,} 
that is nonincreasing and for which l i m j j x j  = x*. 
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