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Math 582 Convex Optimization
Problems from Boyd, Chapter 7

Problem 7.1 Solve the MLE problem when the noise is exponentially distributed with density

p(z) =
1
a
e−z/a1(z ≥ 0)

The MLE is given by the following:

n∏
i=1

p(yi − a′ix) =
n∏

i=1

(1/a) exp
[
−
(

yi − a′ix

a

)]
1(yi − a′ix > 0)

= (1/a)n exp

(
−

n∑
i=1

yi − a′ix

a

)
, y ≥ Ax

This means the ML problem can be expressed as

inf
x

∑n
i=1(yi − a′ix)

s.t. y ≥ Ax

Equivalently,

inf
x

1′(y −Ax)

s.t. 0 ≥ Ax− y

This leads to the Lagrangian:

L(x, ν) = 1′(y −Ax) + ν′(Ax− y)
= 1′y − ν′y + (ν′A− 1′A)x

And the Lagrange dual,

g(ν) =

{
(1− ν)′y if A′(1− ν) = 0
−∞ otherwise

Problem 7.2 Given the linear measurement model, y = Ax + v with uniform noise

p(z) =

{
1/(2α) if |z| ≤ α

0 otherwise

Show that the joint ML estimates of x and α are found by solving the l∞-norm approximation problem

min ‖Ax− y‖∞

The MLE is computed as the maximum of

n∏
i=1

(
1
2α

)
1(−α ≤ a′ix− y ≤ α)
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This is expressed as,

max
x,α

(
1
2α

)n
s.t. ‖Ax− y‖∞ < α

Equivalently, we can solve the minimization problem after a monotonic transformation

min
x,α

α

s.t. ‖Ax− y‖∞ < α

And since α is a slack variable, the result follows.

Problem 7.3 Estimate the parameters, a, b in a probit model where v is a zero mean Gaussian variable:

yi =

{
1 a′ui + b + vi ≤ 0
0 a′ui + b + vi > 0

If y = 1, then a′ui + b ≤ vi. This event has probability given by 1 − Φ(a′ui + b) = Φ(−a′uj − b) where

Φ(z) =
∫ z

−∞
1
2π exp

(
− s2

2

)
ds. Similarly, for y = 0, a′uj + b ≥ vj has probability given by Φ(a′uj + b). We

maximize the likelihood equation: ∏
yi=0

Φ(a′ui + b)
∏

yj=1

Φ(−a′uj − b)

or, equivalently, maximize the log-likelihood equation:∑
yi=0

log Φ(a′ui + b) +
∑
yj=1

log Φ(−a′uj − b)

Φ is an integral of a log-concave function, hence log-concave. Thus the log likelihood is convex and has the
form of a penalty approximation problem.

Problem 7.4a Joint estimation of covariance and mean for a multivariate normal distribution.

Let R be the covariance and a the mean. Define Y and µ to be the respective estimates of R and a:

µ = 1
N

∑N
k=1 yk, Y = 1

N

∑N
k=1(yk − µ)(yk − µ)′

First we state the log-likelihood function

l(R, a) = −(Nn/2) log(2π)− (N/2) log detR− (1/2)
N∑

k=1

(yk − a)′R−1(yk − a)

and note that the last term can be rewritten:

N∑
k=1

(yk − a)′R−1(yk − a) =
N∑

k=1

(yk − µ + µ− a)′R−1(yk − µ + µ− a)

=
∑

(yk − µ)′R−1(yk − µ) + 2
∑

(yk − µ)′R−1(µ− a)︸ ︷︷ ︸
=0

+
∑

(µ− a)′R−1(µ− a)

=
∑

tr(R−1(yk − µ)(yk − µ)) + N(µ− a)′R−1(µ− a)

= N tr(R−1Y ) + N(µ− a)′R−1(µ− a)
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Hence,

l(R, a) = −(Nn/2) log(2π)− (N/2) log detR− N

2
tr(R−1Y )− N

2
(µ− a)′R−1(µ− a)

We maximize the log-likelihood by taking the matrix derivative with respect to R and gradient with respect
to a and setting them to zero:

d

da
(µ− a)′R−1(µ− a) = −2R−1(a− µ)

d

dR
log det R = R−1

d

dR
tr(R−1Y ) = R−1Y R−1

where the last two identities are derived by variational methods (see Appendix A in Boyd).

Setting the derivatives equal to zero yields the following ML estimates:

a = µ

R = Y

Problem 7.5a Markov Chain Estimation. Define the transition probability matrix as

Pij = prob (y(t + 1) = i | y(t) = j)

where
∑n

i=1 Pij = 1. We write the likelihood function:

P (Y1)
N∏

i=2

P (y(i) = ki | y(i− 1) = ki−1)

If we denote nij as the number of transitions from j to i, we can write the above as

P (Y1)
∏
i,j

P
nij

ij

With the constraint, this yields a Lagrangian of the log likelihood:

L(P, ν1, . . . , νn) = c +
∑
ij

nij log Pij +
∑

j

νj

(
1−

∑
i

Pij

)

Taking derivatives, we obtain
∂L

∂Pij
=

nij

Pij
− νj = 0

And summing over i with the constraint yields νj =
∑

i nij ≡ nj . Thus the MLE is

Pij =
nij

nj

which can be interpreted as the number of observed transitions from j to i divided by the total number of
visits to state j.

Problem 7.5b We add the constraint of a known equilibrium distribution, q where 1′q = 1 and Pq = q.
This amounts to adding a constraint to the Lagrangian:

L(P, ν, µ1, . . . , µn) = c +
∑
ij

nij log Pij +
∑

j

νj

(
1−

∑
i

Pij

)
+
∑

i

µi

qi −
∑

j

Pijqj
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This is convex since both constraints are linear in Pij .

Problem 7.6 Consider a normalized random variable, X, and a shifted and scaled random variable Y = X+b
a .

We assume that X has density function, p(x). Then the density function of Y can be computed as

pY (y) = apX(ay − b)

Hence the likelihood is given by
n∏

i=1

apX(ayi − b)

and the log likelihood is convex since pX is log-convex.

We compute ML estimates for a, b for the Laplace distribution, px(x) = exp(−2|x|), for which we maximize
the log likelihood:

max
a,b

n log a− 2
∑n

i=1|ayi − b|

It is equivalent to solve

max
a

max
b

n log a− 2
∑n

i=1|ayi − b|

The inner maximization yields b = amedian(y1, . . . , yn). We can solve for a by taking derivatives. First
define S =

∑
|yi −median(y1, . . . , yn)|.

n log a− 2aS ⇒ n

a
− 2S = 0

⇒ a =
n

2S

⇒ b =
nmedian(y1, . . . , yn)

2S

Problem 7.7

• Xi ∼ Poisson (µi) i ∈ {1, . . . , n}.
These are the types of events.

• pji probability that the jth device detects an event of type i.
There are m devices.

• Yji number of events of type i detected by device j.
Not directly observed.

• Yj =
∑n

i=0 yji is the number of events detected by device j.
These are the observations.

• Goal: estimate µi via maximum likelihood.

P (Yji = k) =
∞∑

n=0

P (Yji = k|Xi = n) P (Xi = n)

=
∞∑

n=0

[(
n

k

)
pk

ji(1− pji)n−k

] [
e−µiµn

i

n!

]

=
∞∑

n=0

e−µi

e−µipji(n− k)!
(µi(1− pji))n−k

︸ ︷︷ ︸
=1

[
e−µipji(µipji)k

k!

]

∼ Poisson (µipji)
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The sum of independent Poisson random variables with means λ1, · · · , λn is a Poisson random variable with
mean λ1 + · · ·+ λn. Hence,

Yj ∼ Poisson

(
n∑

i=0

µipji

)

Now form the maximum likelihood estimate,

L (µ|yi, . . . , ym) =
m∏

j=1

exp (−
∑n

i=1 µipji) (
∑n

i=0 µipji)
yj

yj !

l(µ) = log {L (µ|yi, . . . , ym)}

= −
m∑

j=1

n∑
i=1

µipji +
m∑

j=1

{
yj log

(
n∑

i=1

µipji

)
− log (yj !)

}

= −µ′q +
m∑

j=1

{yj log (µ′pj)− log (yj !)}

The primal problem is then:

min −l(µ) such that −µ ≤ 0

This problem is convex, as it is an affine function of µ minus the log of an affine function of µ.

We compute the Lagrangian which is differentiable in µ.

L(µ, λ) = µ′q −
m∑

j=1

{yj log (µ′pj)− log (yj !)} − µ′λ

Problem 7.8 Estimation using sign measurements. Measurements are given by (yi, ai, bi). We estimate x
in the model:

yi = sign(a′ix + bi + vi)

where yi = ±1 and vi is a log-concave IID noise term. This problem is very similar to question 7.3. Let
F (x) denote the distribution function. Then the MLE is given by∏

yi=1

(1− F (−a′ix− bi)
∏

yj=−1

F (−a′jx− bj)

and the log-likelihood is ∑
yi=1

log((1− F (−a′ix− bi)) +
∑

yj=−1

log(F (−a′jx− bj))

Since the density is assumed to be log concave, it follows that maximizing the log-likelihood is a convex
optimization problem.
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