Dustin Lennon
Math 582 Convex Optimization
Problems from Boyd, Chapter 7

Problem 7.1 Solve the MLE problem when the noise is exponentially distributed with density
1 —z/a
p(z) = ~e~*/*1(z > 0)
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The MLE is given by the following:
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This means the ML problem can be expressed as
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s.t. y > Az

Equivalently,

inf  1'(y— Ax)
s.t. 0>Ax—y

This leads to the Lagrangian:

L(z,v) =1 (y — Az) + V' (Az — y)
=1y—vVy+@A-1Ax

And the Lagrange dual,

—00 otherwise

o) = {(1 —v)y fA(1-v)=0

Problem 7.2 Given the linear measurement model, y = Az 4+ v with uniform noise

0 otherwise

() = {1/(2a) if 2] < a

Show that the joint ML estimates of  and « are found by solving the [,,-norm approximation problem
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The MLE is computed as the maximum of
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This is expressed as,
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Equivalently, we can solve the minimization problem after a monotonic transformation
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And since « is a slack variable, the result follows.

Problem 7.3 Estimate the parameters, a,b in a probit model where v is a zero mean Gaussian variable:

1 dui+b+v; <0

vi= 0 adu;+b+wv;>0
If y = 1, then a’u; + b < v;. This event has probability given by 1 — ®(a’u; +b) = ®(—a’u; — b) where
d(z) = fzoo 5= XD (——) ds. Similarly, for y = 0, a’uj + b > v; has probability given by ®(a’u; + b). We

maximize the likelihood equation:

H ®(a’u; + b) H P(—a'u; —b)

yi=0 y;j=1

or, equivalently, maximize the log-likelihood equation:

Z log ®(a'u; + b) + Z log ®(—a'u; —b)

yi=0 y;j=1

® is an integral of a log-concave function, hence log-concave. Thus the log likelihood is convex and has the
form of a penalty approximation problem.

Problem 7.4a Joint estimation of covariance and mean for a multivariate normal distribution.

Let R be the covariance and a the mean. Define Y and p to be the respective estimates of R and a:
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First we state the log-likelihood function

N
I(R,a) = —(Nn/2)log(2m) — (N/2)logdet R — (1/2) > (yx —a)' R (yr — )
k=1

and note that the last term can be rewritten:
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Hence,

I(R,a) = —(Nn/2)log(27) — (N/2)logdet R — gtr(R’lY) - g(ﬂ —a)R™ ' (p—a)

We maximize the log-likelihood by taking the matrix derivative with respect to R and gradient with respect
to a and setting them to zero:

L= ay R (- a) = 2R (a— p)

da
i10 detR=R7!
dR % -
d —1yy _ p—1 -1
thr(R Y)=R YR

where the last two identities are derived by variational methods (see Appendix A in Boyd).

Setting the derivatives equal to zero yields the following ML estimates:

a=[u
R=Y

Problem 7.5a Markov Chain Estimation. Define the transition probability matrix as

Bij =prob (y(t +1) =i y(t) = 7j)
where Y | P;; = 1. We write the likelihood function:

N
P[] PyG) = ki | y(i —1) = kia)
i=2
If we denote n;; as the number of transitions from j to ¢, we can write the above as
Py [P
irJ
With the constraint, this yields a Lagrangian of the log likelihood:

L(P,Vl,...,l/n) :c—l—ZnijlogPij—i—Zuj (1—Z.Pij>

Taking derivatives, we obtain
oL o g
or; By

—I/jZO

And summing over 7 with the constraint yields v; = >, n;; = n;. Thus the MLE is
p.— i
=
nj
which can be interpreted as the number of observed transitions from j to i divided by the total number of
visits to state j.

Problem 7.5b We add the constraint of a known equilibrium distribution, ¢ where 1’ = 1 and Pq = q.
This amounts to adding a constraint to the Lagrangian:

L(P,V,[Lh...,ﬂn):C—anijlogpij—FZl/j <1_ZPU> +Z,UJ7 Qi—ZPiij
% i J

ij J



This is convex since both constraints are linear in P;;.

Problem 7.6 Consider a normalized random variable, X, and a shifted and scaled random variable Y = %.

We assume that X has density function, p(z). Then the density function of Y can be computed as
py (y) = apx(ay — b)
Hence the likelihood is given by .
H apx (ay; — b)
and the log likelihood is convex since px is lozgjéonvex.

We compute ML estimates for a,b for the Laplace distribution, p,(x) = exp(—2|z|), for which we maximize
the log likelihood:

max nloga—2%"  |ay; — b|
a,
It is equivalent to solve

max max nloga —2%" 1 |ay; — b|
a

The inner maximization yields b = amedian(yi,...,y,). We can solve for a by taking derivatives. First
define S = > |y; — median(y1, ..., yn)|-

nloga—2a5:>ﬁ—2520
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Problem 7.7

e X, ~ Poisson (u;) i€ {l,...,n}.
These are the types of events.

e p;; probability that the jth device detects an event of type i.
There are m devices.

e Y;; number of events of type i detected by device j.
Not directly observed.

o Y; =" ,yj; is the number of events detected by device j.
These are the observations.

e Goal: estimate y; via maximum likelihood.

_ i |:<Z)p§i(1 - pjz‘)nk] [62'/1?]

L =12 (1)
= go m(#i(l —pji)" " [k('up)}

=1

~ Poisson (uipji)



The sum of independent Poisson random variables with means Ay, --- , A, is a Poisson random variable with
mean Ay + --- + \,. Hence,
n
Y; ~ Poisson (Z Mipji)
i=0

Now form the maximum likelihood estimate,

- exp (— Z;L: ip;i) (Z?: Mz'p'i)yj
L(lu’|ylvaym):H L J g J

: y;!
j=1
Up) =log {L (u|yi; - ym)}

= — Z Z wipji + Z {y] log (Z uzpﬂ> — log (yj!)}

lel

=—p'q+ Z {y;log (1'p;) —log (y;1)}
j=1

The primal problem is then:
min  —I(u) such that —pu <0

This problem is convex, as it is an affine function of g minus the log of an affine function of p.

We compute the Lagrangian which is differentiable in u.

L(p,N) =g =Y {y;log (1'p;) —log (y;)} — w'A
j=1

Problem 7.8 Estimation using sign measurements. Measurements are given by (y;, a;, b;). We estimate x
in the model:
y; = sign(a,z + b; + v;)

where y; = +1 and v; is a log-concave IID noise term. This problem is very similar to question 7.3. Let
F(z) denote the distribution function. Then the MLE is given by

H(lf —aix — b;) HF —ajx —bj)
y;i=1 y;j=—1
and the log-likelihood is
Zlog 1— F(—aix —b) Zlog ax —bj))
yi=1 y;j=—1

Since the density is assumed to be log concave, it follows that maximizing the log-likelihood is a convex
optimization problem.



