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Linear Discrimination.

In linear discrimination we are given a set of points x1,...,%n,y1,-..,Ym, and wish to find an
affine function f(r) = a”2 — b that classifies the points so that

f(z;) >0 and f(y;) <0forallien],je [m].

Geometrically, this is equivalent to finding a hyperplane that separates the two sets of points as
shown below.

Robust Linear Discrimination

Given a feasible function f as above, the function af for some a € R is also feasible. So we can
scale f as desired, and the above is equivalent to finding f such that f(z;) > ¢ and f(y;) < —t for
any t € R;. This leads to the robust linear discrimination problem, which asks us to maximize
some such t given |lal]|2 < 1. Written formally:

maximize: t

subject to: aTz; —b>t, i€ [n]
aly; —b< —t, je[m]
lall2 <1

Notice that if ||a||2 = 1 (which we will later show is true for optimal t), f(z;) gives the Euclidean
distance between x; and the hyperplane {z : a”z = b}, and we can make a similar statement for
;. Thus, this is geometrically equivalent to finding the thickest slab that separates the sets of
points as shown below.



e The Problem

(a)

Show that the optimal value ¢* is positive if and only if the two sets of points can be linearly
separated. When this holds, show that the linear inequality ||all2 < 1 is tight.

Proof. If t* > 0, then a”z; —b > t* > 0 and a’y; — b < —t* < 0, so the sets of points
can be linearly separated. Conversely, if the sets of points can be linearly separated, then
for each i and j we have a’a; —b = ¢ > 0 and aTy; — b = —§; < 0. Thus, t* > t =
minie[n],je[m]{ei, §j} > 0.

Now, let us assume the points can be linearly separated, and that a* is the value for a
attained for the optimal t*. Clearly, ||a*||2 < 1, and choose some o > 1 so that ||aa™|]2 = 1.
If a®x; — b > t*, then clearly (aa)Tx; — ab > at*. Similarly (aa)Ty; — ab < —at*. Due
to the optimality of t*, we know at* < t*, and hence o < 1. Thus, & = 1, which means
lla*]l2 = 1. O

Assume t > 0, and let @ = a/t and b = b/t. Prove that the robust linear discrimination
problem above is equivalent to the quadratic program

minimize:  ||al|2
subject to: a’w; —b>1, i€ [n]

Proof. Consider the original problem. Since ¢ > 0, we can divide the constraints by ¢. This
gives the problem:
maximize: ¢
subject to: (a/t)Tz; —b/t > 1, i€ [n]
(a/)y; ~ b/t < 1, j € [m]
la/tll2 <1/t

Now, making the substitution for a and b we get

maximize: ¢

subject to: a’z; —b>1, i€ [n]
a’y; —b< -1, je[m]
lall2 <1/t

Finally, note that maximizing ¢ is equivalent to minimizing ||a|| due to the last constraint.
This yields the desired program. Notice that ||a|| > 0, so we can equivalently minimize ||a||*.
This is indeed a quadratic function, and the reason the above was referred to as a quadratic
program. O

e The Dual



We will use the Lagrangian dual method. We let X be the matrix of x;s, and Y be the matrix of
1;5, and rewrite the original problem as follows:

maximize: ¢
subject to: [—~X11][a,b,c|”

Yy — 1} a,b c]T = 0

lall3 —1<0

where the first constraint corresponds to u, the second constraint corresponds to v, and the last
constraint corresponds to A.

Thus, the Lagrangian is
L(av ba t, u, v, >‘) = _t—’_uT[_Xll] [(Z, b> C}T+UT[Y_11] [(Z, bv C}T+>‘(|‘a||g_1)+5u€]l{i +5UGRT +5)\€R+~

Thus, it is clear that

Vil = 1Tu+1Tv-1,
Vol = 1Tu+1%v,
VoL = YT0u—XTu+ 2al.

Since we are interested in the case where V, ;; = 0, the first two constraints imply 1Ty = 1/2 =
17y. Therefore, the Lagrangian dual function becomes
g(u,v,\) = 1nf{L(a b, t,u,v,\)}
a1 7
= inf {a”YTv — XTu) + ANaTa - 1)}.
1Tu=1/2=1Tv
u,v,A>0

If we now use the third constraint, we see that

glu,v,A) = inf {—=aTaX = \}
1Tu=1/2=1Tv
u,v,A>=0
_ —), when constraints satisfied;
—o0, otherwise.

Lastly, we note that the constraints above imply |[|[Y7v — XTulls < A. Thus, we can write the
dual problem as:
maximize: —||YTv — XTul|y
subject to: u =0 v>=0
1Tu=1/2=1%y

To give a geometric interpretation, we note that 2Y7v is a point in the convex hull of the y;s.
Similarly, 2X T« is a point in the convex hull of the x;5. Hence, this problem is minimizing the
maximum distance between the convex hulls of x and y as shown below.
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