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8.23 • Linear Discrimination.
In linear discrimination we are given a set of points x1, . . . , xn, y1, . . . , ym, and wish to find an
affine function f(x) = aT x− b that classifies the points so that

f(xi) > 0 and f(yj) < 0 for all i ∈ [n], j ∈ [m].

Geometrically, this is equivalent to finding a hyperplane that separates the two sets of points as
shown below.

• Robust Linear Discrimination
Given a feasible function f as above, the function αf for some α ∈ R+ is also feasible. So we can
scale f as desired, and the above is equivalent to finding f such that f(xi) ≥ t and f(yj) ≤ −t for
any t ∈ R+. This leads to the robust linear discrimination problem, which asks us to maximize
some such t given ‖a‖2 ≤ 1. Written formally:

maximize: t
subject to: aT xi − b ≥ t, i ∈ [n]

aT yj − b ≤ −t, j ∈ [m]
‖a‖2 ≤ 1

Notice that if ‖a‖2 = 1 (which we will later show is true for optimal t), f(xi) gives the Euclidean
distance between xi and the hyperplane {z : aT z = b}, and we can make a similar statement for
yj . Thus, this is geometrically equivalent to finding the thickest slab that separates the sets of
points as shown below.
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• The Problem

(a) Show that the optimal value t? is positive if and only if the two sets of points can be linearly
separated. When this holds, show that the linear inequality ‖a‖2 ≤ 1 is tight.

Proof. If t∗ > 0, then aT xi − b ≥ t∗ > 0 and aT yj − b ≤ −t∗ < 0, so the sets of points
can be linearly separated. Conversely, if the sets of points can be linearly separated, then
for each i and j we have aT xi − b = εi > 0 and aT yj − b = −δj < 0. Thus, t∗ ≥ t =
mini∈[n],j∈[m]{εi, δj} > 0.
Now, let us assume the points can be linearly separated, and that a∗ is the value for a
attained for the optimal t∗. Clearly, ‖a∗‖2 ≤ 1, and choose some α ≥ 1 so that ‖αa∗‖2 = 1.
If aT xi − b ≥ t∗, then clearly (αa)T xi − αb ≥ αt∗. Similarly (αa)T yj − αb ≤ −αt∗. Due
to the optimality of t∗, we know αt∗ ≤ t∗, and hence α ≤ 1. Thus, α = 1, which means
‖a∗‖2 = 1.

(b) Assume t > 0, and let ã = a/t and b̃ = b/t. Prove that the robust linear discrimination
problem above is equivalent to the quadratic program

minimize: ‖ã‖2
subject to: ãT xi − b̃ ≥ 1, i ∈ [n]

ãT yj − b̃ ≤ −1, j ∈ [m]

Proof. Consider the original problem. Since t > 0, we can divide the constraints by t. This
gives the problem:

maximize: t
subject to: (a/t)T xi − b/t ≥ 1, i ∈ [n]

(a/t)T yj − b/t ≤ −1, j ∈ [m]
‖a/t‖2 ≤ 1/t

Now, making the substitution for ã and b̃ we get

maximize: t

subject to: ãT xi − b̃ ≥ 1, i ∈ [n]
ãT yj − b̃ ≤ −1, j ∈ [m]
‖ã‖2 ≤ 1/t

Finally, note that maximizing t is equivalent to minimizing ‖ã‖ due to the last constraint.
This yields the desired program. Notice that ‖ã‖ ≥ 0, so we can equivalently minimize ‖ã‖2.
This is indeed a quadratic function, and the reason the above was referred to as a quadratic
program.

• The Dual
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We will use the Lagrangian dual method. We let X be the matrix of xis, and Y be the matrix of
yjs, and rewrite the original problem as follows:

maximize: t
subject to: [−X11][a, b, c]T � 0,

[Y − 11][a, b, c]T � 0,
‖a‖22 − 1 ≤ 0

where the first constraint corresponds to u, the second constraint corresponds to v, and the last
constraint corresponds to λ.
Thus, the Lagrangian is

L(a, b, t, u, v, λ) = −t+uT [−X11][a, b, c]T +vT [Y−11][a, b, c]T +λ(‖a‖22−1)+δu∈Rn
+
+δv∈Rm

+
+δλ∈R+ .

Thus, it is clear that

∇tL = 1T u + 1T v − 1,

∇bL = 1T u + 1T v,

∇aL = Y T v −XT u + 2aλ.

Since we are interested in the case where ∇a,b,t = 0, the first two constraints imply 1T u = 1/2 =
1T v. Therefore, the Lagrangian dual function becomes

g(u, v, λ) = inf
a,b,t

{L(a, b, t, u, v, λ)}

= inf
a

1T u=1/2=1T v
u,v,λ�0

{aT [Y T v −XT u] + λ(aT a− 1)}.

If we now use the third constraint, we see that

g(u, v, λ) = inf
a

1T u=1/2=1T v
u,v,λ�0

{−aT aλ− λ}

=
{
−λ, when constraints satisfied;
−∞, otherwise.

Lastly, we note that the constraints above imply ‖Y T v − XT u‖2 ≤ λ. Thus, we can write the
dual problem as:

maximize: −‖Y T v −XT u‖2
subject to: u � 0 v � 0

1T u = 1/2 = 1T v

To give a geometric interpretation, we note that 2Y T v is a point in the convex hull of the yis.
Similarly, 2XT u is a point in the convex hull of the xis. Hence, this problem is minimizing the
maximum distance between the convex hulls of x and y as shown below.
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