Convex Optimization Assignment 4

Laura Elisa Celis

March 14, 2008

8.23 • Linear Discrimination.

In linear discrimination we are given a set of points $x_1, \ldots, x_n, y_1, \ldots, y_m$, and wish to find an affine function $f(x) = a^T x - b$ that classifies the points so that

 $f(x_i) > 0$ and $f(y_j) < 0$ for all $i \in [n], j \in [m]$.

Geometrically, this is equivalent to finding a hyperplane that separates the two sets of points as shown below.

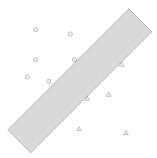
• Robust Linear Discrimination

Given a feasible function f as above, the function αf for some $\alpha \in \mathbb{R}_+$ is also feasible. So we can scale f as desired, and the above is equivalent to finding f such that $f(x_i) \ge t$ and $f(y_j) \le -t$ for any $t \in \mathbb{R}_+$. This leads to the robust linear discrimination problem, which asks us to maximize some such t given $||a||_2 \le 1$. Written formally:

maximize:
$$t$$

subject to: $a^T x_i - b \ge t$, $i \in [n]$
 $a^T y_j - b \le -t$, $j \in [m]$
 $\|a\|_2 \le 1$

Notice that if $||a||_2 = 1$ (which we will later show is true for optimal t), $f(x_i)$ gives the Euclidean distance between x_i and the hyperplane $\{z : a^T z = b\}$, and we can make a similar statement for y_j . Thus, this is geometrically equivalent to finding the thickest *slab* that separates the sets of points as shown below.



- The Problem
 - (a) Show that the optimal value t^* is positive if and only if the two sets of points can be linearly separated. When this holds, show that the linear inequality $||a||_2 \leq 1$ is tight.

Proof. If $t^* > 0$, then $a^T x_i - b \ge t^* > 0$ and $a^T y_j - b \le -t^* < 0$, so the sets of points can be linearly separated. Conversely, if the sets of points can be linearly separated, then for each i and j we have $a^T x_i - b = \epsilon_i > 0$ and $a^T y_j - b = -\delta_j < 0$. Thus, $t^* \ge t =$ $\min_{i \in [n], i \in [m]} \{\epsilon_i, \delta_i\} > 0.$

Now, let us assume the points can be linearly separated, and that a^* is the value for a attained for the optimal t^* . Clearly, $||a^*||_2 \leq 1$, and choose some $\alpha \geq 1$ so that $||\alpha a^*||_2 = 1$. If $a^T x_i - b \geq t^*$, then clearly $(\alpha a)^T x_i - \alpha b \geq \alpha t^*$. Similarly $(\alpha a)^T y_j - \alpha b \leq -\alpha t^*$. Due to the optimality of t^* , we know $\alpha t^* \leq t^*$, and hence $\alpha \leq 1$. Thus, $\alpha = 1$, which means $||a^*||_2 = 1.$

(b) Assume t > 0, and let $\tilde{a} = a/t$ and $\tilde{b} = b/t$. Prove that the robust linear discrimination problem above is equivalent to the quadratic program

minimize:
$$\|\tilde{a}\|_2$$

subject to: $\tilde{a}^T x_i - \tilde{b} \ge 1, \quad i \in [n]$
 $\tilde{a}^T y_j - \tilde{b} \le -1, \quad j \in [m]$

Proof. Consider the original problem. Since t > 0, we can divide the constraints by t. This gives the problem:

maximize:
$$t$$

subject to: $(a/t)^T x_i - b/t \ge 1, \quad i \in [n]$
 $(a/t)^T y_j - b/t \le -1, \quad j \in [m]$
 $||a/t||_2 \le 1/t$

Now, making the substitution for \tilde{a} and \tilde{b} we get

 \mathbf{S}

maximize:
$$t$$

subject to: $\tilde{a}^T x_i - \tilde{b} \ge 1$, $i \in [n]$
 $\tilde{a}^T y_j - \tilde{b} \le -1$, $j \in [m]$
 $\|\tilde{a}\|_2 \le 1/t$

Finally, note that maximizing t is equivalent to minimizing $\|\tilde{a}\|$ due to the last constraint. This yields the desired program. Notice that $\|\tilde{a}\| \ge 0$, so we can equivalently minimize $\|\tilde{a}\|^2$. This is indeed a quadratic function, and the reason the above was referred to as a quadratic program.

• The Dual

We will use the Lagrangian dual method. We let X be the matrix of x_i s, and Y be the matrix of y_j s, and rewrite the original problem as follows:

maximize:
$$t$$

subject to: $[-X11][a, b, c]^T \preceq 0$,
 $[Y-11][a, b, c]^T \preceq 0$,
 $\|a\|_2^2 - 1 \le 0$

where the first constraint corresponds to u, the second constraint corresponds to v, and the last constraint corresponds to λ .

Thus, the Lagrangian is

 $L(a, b, t, u, v, \lambda) = -t + u^{T}[-X11][a, b, c]^{T} + v^{T}[Y-11][a, b, c]^{T} + \lambda(\|a\|_{2}^{2}-1) + \delta_{u \in \mathbb{R}^{n}_{+}} + \delta_{v \in \mathbb{R}^{m}_{+}} + \delta_{\lambda \in \mathbb{R}_{+}}.$ Thus, it is clear that

$$\begin{aligned} \nabla_t L &= 1^T u + 1^T v - 1, \\ \nabla_b L &= 1^T u + 1^T v, \\ \nabla_a L &= Y^T v - X^T u + 2a\lambda. \end{aligned}$$

Since we are interested in the case where $\nabla_{a,b,t} = 0$, the first two constraints imply $1^T u = 1/2 = 1^T v$. Therefore, the Lagrangian dual function becomes

$$g(u, v, \lambda) = \inf_{\substack{a,b,t \\ a,b,t}} \{ L(a, b, t, u, v, \lambda) \}$$

=
$$\inf_{\substack{1^T u = 1/2 = 1^T v \\ u, v, \lambda \ge 0}} \{ a^T [Y^T v - X^T u] + \lambda (a^T a - 1) \}.$$

If we now use the third constraint, we see that

$$g(u, v, \lambda) = \inf_{\substack{a \\ 1^T u = 1/2 = 1^T v \\ u, v, \lambda \succeq 0}} \{-a^T a \lambda - \lambda\}$$
$$= \begin{cases} -\lambda, & \text{when constraints satisfied;} \\ -\infty, & \text{otherwise.} \end{cases}$$

Lastly, we note that the constraints above imply $||Y^T v - X^T u||_2 \leq \lambda$. Thus, we can write the dual problem as:

maximize:
$$-\|Y^T v - X^T u\|_2$$

subject to: $u \succeq 0$
 $1^T u = 1/2 = 1^T v$
 $v \succeq 0$

To give a geometric interpretation, we note that $2Y^Tv$ is a point in the convex hull of the y_i s. Similarly, $2X^Tu$ is a point in the convex hull of the x_i s. Hence, this problem is minimizing the maximum distance between the convex hulls of x and y as shown below.

