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1 Problem 4.61 - Optimization with logistic

model

A random variable X ∈ {0, 1} satisfies

prob(X = 1) = p =
ea

T x+b

1 + eaT x+b

where x ∈ Rn is a vector of variables that affect the probability, and a and b
are known parameters. We can think of X = 1 as the event that a consumer
buys a product, and x as a vector of variables that affect the probability,
e.g. advertising effort, retail price, discounted price, packaging expense, and
other factors. The variable x, which we are to optimize over, is subject to
a set of linear constraints, Fx ≤ g. Formulate the following problems as
convex optimization problems.

1.1 Problem 4.61, Part a

(a) Maximizing buying probability. The goal is to choose x to maximize p.
The problem is to maximize buying probability,

p =
ea

T x+b

1 + eaT x+b

subject to Fx ≤ g. Let f(y) = ey

1+ey

Then, f(y) is increasing in y ∀ y. (This is because f
′
(y) = ey

(1+ey)2
≥ 0)

∴ maximizing f(y) subject to given constraints is ≡ to maximizing
y subject to the given constraints. Since p = f(aT x+ b), the formulation for
this problem is an LP and given by:

Maximize aT x+ b subject to Fx ≤ g
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The dual of the formulation is given by:

Minimize yTg subject to F Ty = a,

y >= 0

1.2 Problem 4.61, Part b

Maximizing expected profit. Let cTx + d be the profit derived from selling
the product,which we assume is positive for all feasible x. The goal is to
maximize the expected profit, which is p(cTx+ d).
The problem is to maximize the expected profit.
The expected profit is given by,

E(profit) = P(customer buys product)× (Profit when customer buys product)

+

P(customer doesn’t buy product)×(Profit when customer doesn’t buy product)

∴ E(profit) = p× (cTx+ d) = g(x)

Check for convexity: Let h(s, t) = s
1+e−t .

Note that, g(x) = h(cT x+ d, aT x+ b)
To check if g(x) is convex, we compute the gradient and hessian of h(s, t)

The gradient is given by,

5h(s, t) =

[
1

(1+e−t)
se−t

(1+e−t)

]

and the hessian is given by,

52h(s, t) =

 0 e−t

(1+e−t)2

e−t

(1+e−t)2
se−t(1−e−t)

(1+e−t)3


Clearly, the hessian is not positive semidefinite. The hessian is also not
negative semidefinite since the second principal minor, which equals the de-
terminant of the hessian, is less than zero. Hence, h(s, t) is neither convex
nor concave.
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Check for quasi-convexity: g(x) = h(cT x+d, aT x+b) can be tested for
quasi-convexity. If g(x) is quasi-convex or quasi-concave, we can use quasi-
convex optimization to determine the local/global optima through techniques
mentioned in section 4.2.5 of the textbook (Convex Optimization by Stephen
Boyd).
Now, for any y ∈ R , f(y) is increasing and hence is quasi-convex.
−f(y) is decreasing and hence quasi-convex.

∴ f(y) is both quasi-convex and quasi-concave. Consider two feasible
points x1, x2. Then cTx1 + d ≥ 0, cTx2 + d ≥ 0 (given).
Also, let y1 = aTx1 + b, y2 = aTx2 + b, then

f(y1) ≤ α implies

1

1 + e−(aT x1+b)
≤ α (1)

and
f(y2) ≤ α implies

1

1 + e−(aT x2+b)
≤ α (2)

and
f(λy1 + (1− λ)y2) ≤ α implies

1

1 + e−(λ(aT x1+b)+(1−λ)(aT x2+b))
≤ α (3)

(1)× (cTx1 + d), (2)× (cTx2 + d) implies

g(x1) =
cTx1 + d

1 + e−(aT x1+b)
≤ α(cTx1 + d) ≤ α

′
(4)

and

g(x2) =
cTx2 + d

1 + e−(aT x2+b)
≤ α(cTx2 + d) ≤ α

′
(5)

where, α
′

= αmax(cTx1 + d, cTx2 + d)

(3) × (λ(cTx1 + d) + (1− λ)(cTx2 + d)) implies
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λ(cTx1 + d) + (1− λ)(cTx2 + d)

1 + e−(λ(aT x1+b)+(1−λ)(aT x2+b))

≤ α(λ(cTx1 + d) + (1− λ)(cTx2 + d))

≤ λ(α(cTx1 + d)) + (1− λ)(α(cTx2 + d))

≤ λ(α
′
) + (1− λ)(α

′
)

≤ α
′

i.e.,

g(λx1 + (1− λ)x2) =
λ(cTx1 + d) + (1− λ)(cTx2 + d)

1 + e−(λ(aT x1+b)+(1−λ)(aT x2+b))
≤ α

′
(6)

(4),(5) and (6) implies g(x) = h(cT x+ d, aT x+ b) is quasi-convex.

( This is because, for every α
′
, x1, x2, there is a corresponding α given by,

α =
α
′

max(cTx1 + d, cTx2 + d)
)

Similarly it can be shown that −g(x) is quasi-convex, which implies that
g(x) is quasi-linear.

Hence the quasi-convex formulation for this problem is:

Minimize− g(x) subject to

Fx ≤ g

The equivalent formulation in terms of the function h(s, t) is

Minimize− h(s, t) subject to

Fx ≤ g,

s− (cTx+ d) = 0,

t− (aTx+ b) = 0

The dual of this formulation is:

D : supy,u,vinfx,s,t
(
−h(s, t) + yT (Fx− g) + u(s− (cTx+ d)) + v(t− (aTx+ b)) + δR+

m
(y))

Rearranging terms, we get,

D : supy,u,v,y≥0

(
−yTg − ud− vb+ infx

(
yTFx− ucTx− vaTx+ infs,t

(
−s

1 + e−t
+ us+ vt

)))
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implies

D : supy,u,v,y≥0,u≥0,u≤1

(
−yTg − ud− vb+ v log

(
u

1− u

)
+ infx

(
yTFx− ucTx− vaTx

))

implies D : supy,u,v,y≥0,u≥0,u≤1

(
−yTg − ud− vb+ v log

(
u

1− u

))
subject to

yTF = ucT + vaT
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