Stephanie Vance
Problem 4.57

We have a discrete memoryless channel between two nodes X and Y. For time
t =1,2,... (in seconds, say), the input at node X is given by X(¢) € {1,...,n}
and the output at note Y is given by Y (t) € {1,...,m}. We are given a channel
transition matriz , P = (p; j)i1<i<m,i<j<n With p; ; = Prob(Y (¢t) = i|X(¢) = j).

Let X have probability distribution € R"; i.e., ; = Prob(X = j). The mutual
information between X and Y is given by

I(X;Y) = Z ijpi,j log, ( Pid )

=1 j—1 D1 ThPij
and the Channel Capacity is given by
C= sup I(X;Y).
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For this problem we need to show how C can be computed using convex optimiza-
tion. To do this we introduce a new variable vector y € R™ with constraint y = Px
and we let ¢ € R™ be the vector whose j** component is cj = > pijlogs(pij)-

Claim:
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The Convex Optimization Problem:

C= min i log(y;
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Note that the objective function is a sum of convex functions and hence convex.
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The Dual Optimization Problem:
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Let fo(z,y) = @ S yilog(y;) — ¢Tx, the objective function of the origi-
nal minimization problem. We now compute the dual objective function g using
equation (5.11) in the textbook.
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To finish the computation of g we need to compute fy*(s,t) for (s,t) € R**™
and determine Dom fj*.
Since the function fj is the sum of m+n independent single variable functions,
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The domain of fo* is the set {c¢} x R™ C R"*™. To see the last equality directly
above, let h(u) = aulog(u) on Ry with o > 1. For each w € R,
h*(w) = sup uw — aulog(u)
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where the right hand side achieves its maximum when w — o — arlog(u) = 0, or
equivalently when v = eawl, Substituting this value of u into the equation,
uw — h(u), yields h*(w) = e=®~! which is equal to 2 /e when o = 1/ log(2).

We can now use the explicit formula for fo* on Dom(fp*) in the last expression
for g(A,v) to obtain,
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The Dual Optimization Problem becomes:
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