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Convex Optimization

Chapter 4, problem 43
Eigenvalue optimization via SDP. Suppose A : Rn → Sm is affine, i.e.,
A(x) = A0 + x1A1 + · · · + xnAn where Ai ∈ Sm. Let λ1(x) ≥ · · · ≥ λm(x) denote the eigenvalues of A(x).
Show how to pose the following problems as SDPs.

Target form for the SDP
minimize cT x
subject to x1F1 + . . . xnFn + G � 0

Ax = b

where F1, . . . , Fn, G ∈ Sk and A ∈ Rp×n.
Generalized Lagrangian Duality

Primal Problem (P) min
x s.t. fi(x)≤K0,i=1,...m

f0(x)

Lagrangian L(x, y) = f0(x) + 〈y, F (x)〉 − δK(y)

Dual objective g(y) = inf
x

L(x, y).

Dual Problem (D) sup
y

g(y)

(a) Minimize the maximum eigenvalue λ1(x).
Solution: Note that λI −A(x) � 0 if and only if λ− λ1(x) ≥ 0. Therefore, λ1(x) is the smallest λ for which
λI −A(x) � 0. That is, for each x we have

λ1(x) = min
A(x)−λI�0

λ (1)

So we may express the problem at hand as follows minx∈Rn λ1(x) = minx∈Rn s.t. A(x)−λI�0 λ. Let
c̃ = [0, . . . , 0, 1]T ∈ Rn+1, and let x̃ = [x, λ]T . Then we may re-express the minimization problem above as

min
A0+x1A1+···+xnAn+λ(−I)�0

c̃T x̃,

which is in the primal form for an SDP.
The Lagrangian is

L(x̃, Y ) = c̃T x̃ + tr ((A0 + x1A1 + · · ·xnAn + λ(−I))Y )− δSm
+

(Y )

= tr(A0Y ) +
n∑

i=1

xitr(AiY ) + λ(1− tr(Y ))− δSm
+

(Y )

Therefore,

g(Y ) = inf
x̃

L(x̃, Y ) =

{
tr(A0Y )− δSm

+
(Y ) if tr(AiY ) = 0 for i = 1, . . . , n and tr(Y ) = 1,

−∞ otherwise.

So the dual problem is

max tr(A0Y )
Y ∈ Sm

+ subject to
tr(Y ) = 1, tr(AiY ) = 0

for i = 1, . . . n
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(b) Minimize the spread of the eigenvalues, λ1(x)− λm(x).
Solution: Note that γI −A(x) � 0 if and only if γ − λm(x) ≤ 0. Therefore,

λm(x) = max
γI−A(x)�0

γ. (2)

Negating both sides of Equation 2, and combining the expression for λm(x) with that for λ1(x) in Equation
1, we have

min
x∈Rn

λ1(x)− λm(x) = min
x∈Rn s.t. γI�A(x)�λI

λ− γ.

Let Fi =
[

Ai 0
0 −Ai

]
for i = 0, . . . , n, let Fλ1 =

[
−I 0
0 0

]
, and Fλm

=
[

0 0
0 I

]
.

Define x̃ = [x, λ, γ]T and c̃ = [0, . . . , 0, 1,−1]T ∈ Rn+2. Then

min
x∈Rn

λ1(x)− λm(x) = min
F0+

∑m
i=1 x1F1+λFλ+γFγ�0

c̃T x̃,

which is an SDP. The Lagrangian is

L(x̃, Y ) = c̃T x̃ + tr ((F0 + x1F1 + · · ·+ xnFn + λFλ + γFγ)Y )− δS2m
+

)(Y )

= tr(F0Y ) +
n∑

i=1

xitr(FiY ) + λ(1 + tr(FλY )) + γ(−1 + tr(FγY ))− δS2m
+

(Y )

Therefore,

g(Y ) = inf
x̃

L(x̃, Y ) =


tr(F0Y )− δS2m

+
(Y ) if tr(FiY ) = 0 for i = 1, . . . , n,

tr(FλY ) = −1, and tr(FγY ) = 1,

−∞ otherwise.

The dual problem is

max tr(F0Y ).

Y ∈ S2m
+ subject to

tr(FλY ) = −1, tr(FγY ) = 1, tr(FiY ) = 0
for i = 1, . . . n

If we write Y =
[

Y1 Ỹ

Ỹ T Y2

]
, where Y1, Y2 ∈ Sm

+ , then we may re-express the the dual problem as

max tr(A0Y1)− tr(A0Y2).
Y1, Y2 ∈ Sm

+ subject to
tr(Y1) = 1, tr(Y2) = 1, tr(AiY1)− tr(AiY2) = 0

for i = 1, . . . n

(c) Minimize the condition number of A(x), subject to A(x) � 0. The condition number is
defined as κ(A(x)) = λ1(x)/λm(x). You may assume that A(x) � 0 for at least one x.
Solution: From Equation 1 and by taking the reciprocal of each side of Equation 2, we have

min
{x∈Rn:A(x)�0}

λ1(x)
λm(x)

= min
0≺γI�A(x)�λI

λ

γ
.

Let s = 1/γ and t = λ/γ. Then we may express the minimization problem as

min
−s<0,I�sA(x)�tI

t = min
−s<0,I�sA0+

∑n
i=1 xisAi�tI

t.
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Letting y = sx, we have

min
−s<0,I�sA0+

∑n
i=1 xisAi�tI

t = min
−Is≺0,I�sA0+

∑n
i=1 yiAi�tI

t.

Consider the two optimization problems:

(P1) min
−Is≺0,I�sA0+

∑n
i=1 yiAi�tI

t

(P2) min
−Is�0,I�sA0+

∑n
i=1 yiAi�tI

t.

The second problem is a convex optimization problem, as defined in chapter 4. Both objectives are differ-
entiable. The one difficulty (P1) is that its domain is not closed. Note that the proof of the optimality
condition (4.21) does not rely on the fact that the domain of the problem is closed–the same proof works for
a problem with a domain that convex but not closed. Also, the discussion in section 4.6 says that condition
(4.21) may be applied to problems with generalized inequality constraints. Therefore, we may apply this
optimality condition to both P1 and P2. Suppose [ŷ, ŝ, t̂]T solves (P1). Then

[0, 1, 0]([y − ŷ, t− t̂, s− ŝ]T ) = t− t̂ ≥ 0 (3)

for all [y, t, s]T ∈ Rn+2 such that s > 0 and I � sA0 +
∑n

i=1 yiAi � tI. Then Equation 3 holds for all
[y, t, s]T ∈ Rn+2 such that s ≥ 0 and I � sA0 +

∑n
i=1 yiAi � tI, which implies that [ŷ, t̂, ŝ]T solves (P2). So,

every solution to (P1) is a solution to (P2). The converse is not true. In order to use the SDP framework, I
will pose (P2) as an SDP.

Let G =

 0 0 0
0 I 0
0 0 0

, Fs =

 −I 0 0
0 −A0 0
0 0 A0

, Fi =

 0 0 0
0 −Ai 0
0 0 Ai

, and Ft =

 0 0 0
0 0 0
0 0 −I

.

Let x̃ = [y, t, s]T ∈ Rn+2, and c̃ = [0, · · · , 0, 1, 0]T ∈ Rn+2. Then (P2) is equivalent to

min
sFs+

∑n
i=1 yiFi+tFt+G�0

c̃T x̃.

The Lagrangian is

L(x̃, Y ) = c̃T x̃ + tr((sFs +
n∑

i=1

yiFi + tFt + G)Y )− δS3m
+

(Y )

= str(FsY ) +
∑
i=1n

yitr(FiY ) + t(1 + tr(FtY )) + tr(GY )− δS3m
+

(Y )

Therefore,

g(Y ) = inf
x̃

L(x̃, Y ) =

{
tr(GY )− δS3m

+
(Y ) if tr(FiY ) = 0 for i = 1, . . . , n and tr(FtY ) = −1,

−∞ otherwise.

So the dual problem is

max
Y ∈S3m

+

tr(GY ).

subject to
tr(FsY ) = 0, tr(FiY ) = 0, tr(FtY ) = −1

for i = 1, . . . n

If we write Y =

 Y1 A B
AT Y2 C
BT CT Y3

, where Y1, Y2, Y3 ∈ Sm
+ , then we may re-express the the dual problem as

max tr(Y2).
Y1, Y2, Y3 ∈ Sm

+ subject to
tr(−Y1 −A0Y2 + A0Y3) = 0, tr(Ai(Y3 − Y2)) = 0, tr(Y3) = 1

for i = 1, . . . n
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(d) Minimize the sum of the absolute values of the eigenvalues, |λ1(x)|+ · · ·+ |λm(x)|.
Solution: For each x, A(x) is a linear mapping from Rm → Rm. Since A(x) is symmetric, it has an orthogonal
basis of eigenvectors (which depend smoothly on x). Let E+ denote the Minkowski sum of the eigenspaces
of A(x) corresponding to the nonnegative eigenvalues of A(x) (let E+ be 0 if there are no nonnegative
eigenvalues). Likewise, let E− denote the Minkowski sum of the eigenspaces of A(x) corresponding to
negative eigenvalues of A(x) (and let it be 0 if all the eigenvalues are nonnegative). Let Ũ = −A(x)|E+ and
let Ṽ = A(x)|E− . Then Ũ , Ṽ ∈ Sm

+ and A(x) = Ũ−Ṽ . Furthermore, the eigenvalues of Ũ are the nonnegative
eigenvalues of A(x) and the eigenvalues of Ṽ are the absolute values of the negative eigenvalues of A(x). Then∑m

i=1 |λi(x)| = tr(Ũ + Ṽ ). Suppose U, V ∈ Sm
+ are such that A(x) = U − V . We may write U = U+ + U−

and V = V+ + V−, where U+ = U |E+ , etc. Note that U+ � 0, etc. Then A(x) = (U+ − V+) − (V− − U−),
which implies that Ũ = U+ + V+ and Ṽ = V− − U−. So,

m∑
i=1

|λi(x)| = tr(Ũ + Ṽ ) = tr(U+ − V+ + V− − U−)

= tr(U+)− tr(V+) + tr(V−)− tr(U−) ≤ tr(U+) + tr(V−)
≤ tr(U) + tr(V ).

Therefore, the problem minx

∑m
i=1 |λi(x)| is equivalent to

min
U,V�0,A0+

∑n
i=1 xiAi=U−V

tr(U + V ).
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